NikkeS commited on
Commit
ec69f53
·
verified ·
1 Parent(s): 0832db8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +101 -150
README.md CHANGED
@@ -1,199 +1,150 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
 
 
29
 
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
 
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
 
52
  ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
 
64
  ### Recommendations
 
 
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
69
 
70
- ## How to Get Started with the Model
 
 
71
 
72
- Use the code below to get started with the model.
 
 
 
 
 
73
 
74
- [More Information Needed]
 
 
 
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
 
84
  ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
 
93
  #### Training Hyperparameters
 
 
 
 
 
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
  ### Testing Data, Factors & Metrics
108
-
109
  #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
 
121
  #### Metrics
 
 
 
 
 
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
 
141
  ## Environmental Impact
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - sentiment-analysis
5
+ - imdb
6
+ - text-classification
7
+ - distilbert
8
+ license: apache-2.0
9
+ datasets:
10
+ - stanfordnlp/imdb
11
+ language:
12
+ - en
13
+ metrics:
14
+ - accuracy
15
+ - precision
16
+ - recall
17
+ - f1
18
+ base_model:
19
+ - distilbert/distilbert-base-uncased
20
+ pipeline_tag: text-classification
21
  ---
22
 
23
+ # Model Card for DistilBERT Fine-Tuned on IMDB Sentiment Analysis
 
 
 
 
24
 
25
  ## Model Details
26
 
27
  ### Model Description
28
 
29
+ This model is a fine-tuned version of `distilbert-base-uncased` on the **IMDB movie reviews dataset** for **binary sentiment classification** (positive vs. negative). The model has been trained to classify movie reviews into either **positive (1)** or **negative (0)** sentiments.
 
 
 
 
 
 
 
 
 
 
30
 
31
+ - **Developed by:** Nikke Salonen
32
+ - **Finetuned from model:** `distilbert-base-uncased`
33
+ - **Language(s):** English
34
+ - **License:** Apache 2.0
35
 
36
+ ### Model Sources
37
+ - **Repository:** https://huggingface.co/NikkeS/imdb-distilbert/
38
+ - **Dataset:** [IMDB Dataset](https://ai.stanford.edu/~amaas/data/sentiment/)
 
 
39
 
40
  ## Uses
41
 
 
 
42
  ### Direct Use
43
+ - Sentiment analysis of **English text reviews**.
44
+ - Can be used for **opinion mining** on movie reviews and similar datasets.
45
 
46
+ ### Downstream Use
47
+ - Can be **fine-tuned further** for sentiment classification in other domains (e.g., product reviews, social media sentiment analysis).
 
 
 
 
 
 
 
48
 
49
  ### Out-of-Scope Use
50
+ - Not suitable for **languages other than English**.
51
+ - Not recommended for **high-stakes decision-making** without human oversight.
 
 
52
 
53
  ## Bias, Risks, and Limitations
54
 
55
+ - The model is **trained on IMDB reviews**, so it may **not generalize well** to other types of sentiment analysis tasks.
56
+ - May exhibit **biases present in the training data**.
57
+ - Sentiment classification **depends heavily on context**, and the model may misinterpret sarcasm or complex sentences.
58
 
59
  ### Recommendations
60
+ - Users should **evaluate the model** on their specific datasets before deploying in production.
61
+ - If biases are detected, consider **fine-tuning on a more diverse dataset**.
62
 
63
+ ## How to Use the Model
64
 
65
+ ```python
66
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
67
+ import torch
68
 
69
+ # Load the fine-tuned model from Hugging Face Hub
70
+ model = AutoModelForSequenceClassification.from_pretrained("your-hf-username/imdb-distilbert")
71
+ tokenizer = AutoTokenizer.from_pretrained("your-hf-username/imdb-distilbert")
72
 
73
+ def predict_sentiment(review):
74
+ inputs = tokenizer(review, return_tensors="pt", truncation=True, padding=True, max_length=256)
75
+ with torch.no_grad():
76
+ logits = model(**inputs).logits
77
+ prediction = torch.argmax(logits, dim=1).item()
78
+ return "Positive" if prediction == 1 else "Negative"
79
 
80
+ # Example Usage
81
+ print(predict_sentiment("This movie was absolutely fantastic!"))
82
+ print(predict_sentiment("The acting was terrible, and the story made no sense."))
83
+ ```
84
 
85
  ## Training Details
86
 
87
  ### Training Data
88
+ - The model was fine-tuned on the **IMDB dataset** (50,000 labeled movie reviews).
89
+ - The dataset is **balanced** (25,000 positive and 25,000 negative reviews).
 
 
90
 
91
  ### Training Procedure
92
+ #### Preprocessing
93
+ - Tokenized using `distilbert-base-uncased` tokenizer.
94
+ - Applied **dynamic padding, truncation, and a max sequence length of 256**.
 
 
 
 
95
 
96
  #### Training Hyperparameters
97
+ - **Learning rate:** `5e-5`
98
+ - **Batch size:** `16`
99
+ - **Epochs:** `2`
100
+ - **Optimizer:** AdamW
101
+ - **Loss Function:** Cross-Entropy Loss
102
 
103
+ #### Compute Infrastructure
104
+ - **Hardware:** Google Colab T4 GPU
105
+ - **Precision:** Mixed precision (`fp16=True` for efficiency)
 
 
 
 
106
 
107
  ## Evaluation
108
 
 
 
109
  ### Testing Data, Factors & Metrics
 
110
  #### Testing Data
111
+ - The model was evaluated on a **10,000-sample test set** from the IMDB dataset.
 
 
 
 
 
 
 
 
 
112
 
113
  #### Metrics
114
+ - **Accuracy:** 92,4%
115
+ - **Precision, Recall, F1-score:**
116
+ - **Precision:** 92,4%
117
+ - **Recall:** 92.3%
118
+ - **F1-score:** 92.3%
119
 
120
+ ## Model Examination
121
+ - The model performs well on **general sentiment classification** but may struggle with **sarcasm, irony, or very short reviews**.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122
 
123
  ## Environmental Impact
124
+ - **Hardware Type:** Google Colab T4 GPU
125
+ - **Training Time:** ~1 hour
126
+ - **CO2 Emission Estimate:** [Use ML Impact Calculator](https://mlco2.github.io/impact#compute)
127
+
128
+ ## Citation
129
+ If you use this model, please cite:
130
+ ```bibtex
131
+ @article{salonen2025imdb-distilbert,
132
+ title={Fine-tuned DistilBERT for Sentiment Analysis on IMDB Reviews},
133
+ author={Nikke Salonen},
134
+ year={2025}
135
+ }
136
+ ```
137
+
138
+ ## More Information
139
+ - **Hugging Face Model Page:** https://huggingface.co/NikkeS/imdb-distilbert/.
140
+ - **Dataset:** [IMDB Dataset](https://ai.stanford.edu/~amaas/data/sentiment/)
141
+
142
+ ## Model Card Authors
143
+ - [Nikke Salonen]
144
+
145
+ ## Contact
146
+ For questions or issues, contact **[email protected]**.
147
 
148
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
149
 
150
+ This model card provides all necessary details, including **training info, evaluation results, and usage instructions**. Let me know if you'd like any modifications before uploading to **Hugging Face Hub**!