--- base_model: Rostlab/prot_bert tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: prot_bert-fine-tuned-toxicity_2.1 results: [] --- # prot_bert-fine-tuned-toxicity_2.1 This model is a fine-tuned version of [Rostlab/prot_bert](https://huggingface.co/Rostlab/prot_bert) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6960 - Accuracy: 0.5484 - Precision: 0.3007 - Recall: 0.5484 - F1: 0.3884 All params of Protbert were freezed. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.6963 | 1.0 | 16 | 0.7071 | 0.5484 | 0.3007 | 0.5484 | 0.3884 | | 0.7041 | 2.0 | 32 | 0.7012 | 0.5484 | 0.3007 | 0.5484 | 0.3884 | | 0.6946 | 3.0 | 48 | 0.7030 | 0.5484 | 0.3007 | 0.5484 | 0.3884 | | 0.692 | 4.0 | 64 | 0.6939 | 0.5484 | 0.3007 | 0.5484 | 0.3884 | | 0.6951 | 5.0 | 80 | 0.6929 | 0.4516 | 0.2040 | 0.4516 | 0.2810 | | 0.6939 | 6.0 | 96 | 0.6969 | 0.5484 | 0.3007 | 0.5484 | 0.3884 | | 0.6927 | 7.0 | 112 | 0.6944 | 0.5484 | 0.3007 | 0.5484 | 0.3884 | | 0.6911 | 8.0 | 128 | 0.6960 | 0.5484 | 0.3007 | 0.5484 | 0.3884 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1