File size: 1,895 Bytes
60e4d0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import os
import time
import streamlit as st
from qa_loader import load_qa_and_create_vectorstore
from rag_chain import generate_response
from dotenv import load_dotenv

# πŸ”Ή Load environment variables
load_dotenv()

# πŸ”Ή Streamlit Page Configuration
st.set_page_config(page_title="Vistula University AI Assistant", layout="centered")

# πŸ”Ή Title and Description
st.title("πŸ“š Vistula University AI Assistant")
st.write("πŸš€ Ask me anything about Vistula University!")

# πŸ”Ή Retrieve Data (Cached for Performance)
@st.cache_resource
def get_retriever():
    return load_qa_and_create_vectorstore()

retriever = get_retriever()

if isinstance(retriever, tuple):  
    retriever = retriever[0]

# πŸ”Ή Start or Load Chat History
if "chat_history" not in st.session_state:
    st.session_state.chat_history = []

# πŸ”Ή Display Chat History
st.write("### πŸ—‚οΈ Chat History")

for entry in st.session_state.chat_history:
    with st.chat_message("user"):
        st.write(entry["question"])
    with st.chat_message("assistant"):
        st.write(entry["answer"])

# πŸ”Ή User Input
query = st.chat_input("Ask your question about Vistula University!")

# πŸ”Ή Process When User Submits a Question
if query:
    with st.spinner("πŸ€– Thinking..."):
        response = generate_response(retriever, query)

    # πŸ”Ή Add to Chat History
    st.session_state.chat_history.append({
        "question": query,
        "answer": response
    })

    # πŸ”Ή Display User Question and AI Response
    with st.chat_message("user"):
        st.write(query)
    with st.chat_message("assistant"):
        placeholder = st.empty()
        current_text = ""

        # Typing Effect
        for word in response.split():
            current_text += word + " "
            placeholder.write(current_text)
            time.sleep(0.05)