Nhut commited on
Commit
a8cdef5
·
1 Parent(s): 55b6596

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -17
README.md CHANGED
@@ -24,7 +24,7 @@ model-index:
24
  metrics:
25
  - name: Test WER
26
  type: wer
27
- value: 57.04
28
  ---
29
 
30
  # Wav2Vec2-Large-XLSR-53-Vietnamese
@@ -51,15 +51,15 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
51
  # Preprocessing the datasets.
52
  # We need to read the aduio files as arrays
53
  def speech_file_to_array_fn(batch):
54
- \\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
55
- \\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
56
- \\\\treturn batch
57
 
58
  test_dataset = test_dataset.map(speech_file_to_array_fn)
59
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
60
 
61
  with torch.no_grad():
62
- \\\\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
63
 
64
  predicted_ids = torch.argmax(logits, dim=-1)
65
 
@@ -87,37 +87,37 @@ processor = Wav2Vec2Processor.from_pretrained("Nhut/wav2vec2-large-xlsr-vietname
87
  model = Wav2Vec2ForCTC.from_pretrained("Nhut/wav2vec2-large-xlsr-vietnamese")
88
  model.to("cuda")
89
 
90
- chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\\\\\\\\\+\\\\\\\\@\\\\\\\\ǀ\\\\\\\\,\\\\\\\\?\\\\\\\\.\\\\\\\\!\\\\\\\\-\\\\\\\\;\\\\\\\\:\\\\\\\\"\\\\\\\\“\\\\\\\\%\\\\\\\\‘\\\\\\\\”\\\\\\\\�0123456789]'
91
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
92
 
93
  # Preprocessing the datasets.
94
  # We need to read the aduio files as arrays
95
  def speech_file_to_array_fn(batch):
96
- \\\\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
97
- \\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
98
- \\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
99
- \\\\treturn batch
100
 
101
  test_dataset = test_dataset.map(speech_file_to_array_fn)
102
 
103
  # Preprocessing the datasets.
104
  # We need to read the aduio files as arrays
105
  def evaluate(batch):
106
- \\\\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
107
 
108
- \\\\twith torch.no_grad():
109
- \\\\t\\\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
110
 
111
- \\\\tpred_ids = torch.argmax(logits, dim=-1)
112
- \\\\tbatch["pred_strings"] = processor.batch_decode(pred_ids)
113
- \\\\treturn batch
114
 
115
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
116
 
117
  print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
118
  ```
119
 
120
- **Test Result**: 57.04 %
121
 
122
 
123
  ## Training
 
24
  metrics:
25
  - name: Test WER
26
  type: wer
27
+ value: 56.42
28
  ---
29
 
30
  # Wav2Vec2-Large-XLSR-53-Vietnamese
 
51
  # Preprocessing the datasets.
52
  # We need to read the aduio files as arrays
53
  def speech_file_to_array_fn(batch):
54
+ \\\\\\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
55
+ \\\\\\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
56
+ \\\\\\\\treturn batch
57
 
58
  test_dataset = test_dataset.map(speech_file_to_array_fn)
59
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
60
 
61
  with torch.no_grad():
62
+ \\\\\\\\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
63
 
64
  predicted_ids = torch.argmax(logits, dim=-1)
65
 
 
87
  model = Wav2Vec2ForCTC.from_pretrained("Nhut/wav2vec2-large-xlsr-vietnamese")
88
  model.to("cuda")
89
 
90
+ chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\+\\\\\\\\\\\\\\\\@\\\\\\\\\\\\\\\\ǀ\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\?\\\\\\\\\\\\\\\\.\\\\\\\\\\\\\\\\!\\\\\\\\\\\\\\\\-\\\\\\\\\\\\\\\\;\\\\\\\\\\\\\\\\:\\\\\\\\\\\\\\\\"\\\\\\\\\\\\\\\\“\\\\\\\\\\\\\\\\%\\\\\\\\\\\\\\\\‘\\\\\\\\\\\\\\\\”\\\\\\\\\\\\\\\\�0123456789]'
91
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
92
 
93
  # Preprocessing the datasets.
94
  # We need to read the aduio files as arrays
95
  def speech_file_to_array_fn(batch):
96
+ \\\\\\\\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
97
+ \\\\\\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
98
+ \\\\\\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
99
+ \\\\\\\\treturn batch
100
 
101
  test_dataset = test_dataset.map(speech_file_to_array_fn)
102
 
103
  # Preprocessing the datasets.
104
  # We need to read the aduio files as arrays
105
  def evaluate(batch):
106
+ \\\\\\\\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
107
 
108
+ \\\\\\\\twith torch.no_grad():
109
+ \\\\\\\\t\\\\\\\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
110
 
111
+ \\\\\\\\tpred_ids = torch.argmax(logits, dim=-1)
112
+ \\\\\\\\tbatch["pred_strings"] = processor.batch_decode(pred_ids)
113
+ \\\\\\\\treturn batch
114
 
115
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
116
 
117
  print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
118
  ```
119
 
120
+ **Test Result**: 56.42 %
121
 
122
 
123
  ## Training