Zack Zhiyuan Li
commited on
Commit
·
668e58f
1
Parent(s):
c8f6ef0
add leaderboard
Browse files
README.md
CHANGED
@@ -20,6 +20,7 @@ language:
|
|
20 |
- <a href="https://www.nexa4ai.com/" target="_blank">Nexa AI Website</a>
|
21 |
- <a href="https://github.com/NexaAI/octopus-v4" target="_blank">Octopus-v4 Github</a>
|
22 |
- <a href="https://arxiv.org/abs/2404.19296" target="_blank">ArXiv</a>
|
|
|
23 |
- <a href="https://graph.nexa4ai.com/" target="_blank">Graph demo</a>
|
24 |
</p>
|
25 |
|
@@ -118,6 +119,7 @@ We leverage the latest Language Large Models for a variety of domains. Below is
|
|
118 |
| `AdaptLLM/law-chat` | Law | `international_law`, `jurisprudence`, `professional_law` |
|
119 |
| `meta-llama/Meta-Llama-3-8B-Instruct` | Psychology | `high_school_psychology`, `professional_psychology` |
|
120 |
|
|
|
121 |
### MMLU Benchmark Results (5-shot learning)
|
122 |
Here are the comparative MMLU scores for various models tested under a 5-shot learning setup:
|
123 |
|
@@ -131,7 +133,8 @@ Here are the comparative MMLU scores for various models tested under a 5-shot le
|
|
131 |
| Gemma-2b | 42.3% |
|
132 |
| Gemma-7b | 64.3% |
|
133 |
|
134 |
-
|
|
|
135 |
|
136 |
## References
|
137 |
We thank the Microsoft team for their amazing model!
|
|
|
20 |
- <a href="https://www.nexa4ai.com/" target="_blank">Nexa AI Website</a>
|
21 |
- <a href="https://github.com/NexaAI/octopus-v4" target="_blank">Octopus-v4 Github</a>
|
22 |
- <a href="https://arxiv.org/abs/2404.19296" target="_blank">ArXiv</a>
|
23 |
+
- <a href="https://huggingface.co/spaces/NexaAIDev/domain_llm_leaderboard" target="_blank">Domain LLM Leaderbaord</a>
|
24 |
- <a href="https://graph.nexa4ai.com/" target="_blank">Graph demo</a>
|
25 |
</p>
|
26 |
|
|
|
119 |
| `AdaptLLM/law-chat` | Law | `international_law`, `jurisprudence`, `professional_law` |
|
120 |
| `meta-llama/Meta-Llama-3-8B-Instruct` | Psychology | `high_school_psychology`, `professional_psychology` |
|
121 |
|
122 |
+
|
123 |
### MMLU Benchmark Results (5-shot learning)
|
124 |
Here are the comparative MMLU scores for various models tested under a 5-shot learning setup:
|
125 |
|
|
|
133 |
| Gemma-2b | 42.3% |
|
134 |
| Gemma-7b | 64.3% |
|
135 |
|
136 |
+
### Domain LLM Leaderboard
|
137 |
+
Explore our collection of domain-specific large language models (LLMs) or contribute by suggesting new models tailored to specific domains. For detailed information on available models and to engage with our community, please visit our [Domain LLM Leaderboard](https://huggingface.co/spaces/NexaAIDev/domain_llm_leaderboard).
|
138 |
|
139 |
## References
|
140 |
We thank the Microsoft team for their amazing model!
|