Neleac commited on
Commit
449df78
·
verified ·
1 Parent(s): 069a6e9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +22 -7
README.md CHANGED
@@ -7,20 +7,35 @@ metrics:
7
  - bleu
8
  - meteor
9
  - rouge
10
- pipeline_tag: text-generation
11
  inference: false
12
  tags:
13
  - video-captioning
14
  ---
15
- # SpaceTimeGPT - A Spatiotemporal Video Captioning Model
16
 
17
- ![SpaceTimeGPT](https://raw.githubusercontent.com/Neleac/SpaceTimeGPT/main/model.JPG)
 
 
 
 
 
 
18
 
19
- Vision Encoder Model: [timesformer-base-finetuned-k600](https://huggingface.co/facebook/timesformer-base-finetuned-k600) \
20
- Text Decoder Model: [gpt2](https://huggingface.co/gpt2)
21
 
22
- #### Evaluation Result:
23
- 67.2 CIDEr on [VaTeX](https://eric-xw.github.io/vatex-website/index.html) public test set
 
 
 
 
 
 
 
 
 
 
24
 
25
  #### Example Inference Code:
26
  ```python
 
7
  - bleu
8
  - meteor
9
  - rouge
10
+ pipeline_tag: video-text-to-text
11
  inference: false
12
  tags:
13
  - video-captioning
14
  ---
15
+ <h1 align='center'> SpaceTimeGPT - Video Captioning Model </h1>
16
 
17
+ <div align="center">
18
+ <a href="https://github.com/Neleac/SpaceTimeGPT">
19
+ <img src="https://img.shields.io/badge/GitHub-Neleac/SpaceTimeGPT-purple.svg">
20
+ </a>
21
+ <img src="https://raw.githubusercontent.com/Neleac/SpaceTimeGPT/main/model.JPG" width="75%" height="75%">
22
+ <p> (partial diagrams from <a href="https://arxiv.org/abs/2103.15691">1</a>, <a href="https://arxiv.org/abs/2102.05095">2</a>, <a href="https://arxiv.org/abs/1706.03762">3</a>) </p>
23
+ </div>
24
 
25
+ SpaceTimeGPT is a video description generation model capable of both spatial and temporal reasoning. Given a video, eight frames are sampled and analyzed by the model. The output is a sentence description of the events that occured in the video, generated using autoregression.
 
26
 
27
+ ## Architecture and Training
28
+ Vision Encoder: [timesformer-base-finetuned-k600](https://huggingface.co/facebook/timesformer-base-finetuned-k600) \
29
+ Text Decoder: [gpt2](https://huggingface.co/gpt2)
30
+
31
+ The encoder and decoder are initialized using pretrained weights for video classification and sentence completion, respectively. Encoder-decoder cross attention is used to unify the visual and linguistic domains. The model is fine-tuned end-to-end on the video captioning task.
32
+
33
+ ## Dataset and Evaluation
34
+ SpaceTimeGPT is trained on [VATEX](https://eric-xw.github.io/vatex-website/index.html), a large video captioning dataset.
35
+
36
+ Performance: 67.3 [CIDEr](https://github.com/ramavedantam/cider) on the VATEX test split
37
+
38
+ Sampling method: 30 $\le$ generated tokens $\le$ 60, beam search with 8 beams
39
 
40
  #### Example Inference Code:
41
  ```python