File size: 5,527 Bytes
486585a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
from collections import defaultdict

import fasttext
import pandas as pd
from sklearn.metrics import classification_report
from tqdm import tqdm; tqdm.pandas()
#!pip install tabulate
import io
from pathlib import Path
import numpy as np
import pandas as pd
import requests
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
from sklearn.metrics import precision_recall_fscore_support


names = pd.read_csv(
    io.StringIO(requests.get("https://iso639-3.sil.org/sites/iso639-3/files/downloads/iso-639-3.tab").text
), sep="\t").set_index("Id").rename(
    columns={"Ref_Name": "name"}
)[["name"]].to_dict()["name"]
tato_names = pd.read_html(
    "https://tatoeba.org/en/stats/sentences_by_language"
)[0].rename(
    columns={"Unnamed: 2": "code", "Language": "name"}
).set_index("code")[["name"]].to_dict()["name"]
names.update(tato_names)

# langs = pd.read_csv("train.csv").lang.unique().tolist()
# langs_df = pd.DataFrame({"ISO-639-3": langs}).sort_values("ISO-639-3")
# langs_df["Language"] = langs_df["ISO-639-3"].apply(names.__getitem__)
# langs_df = langs_df.set_index("ISO-639-3")


def pandas_classification_report(y_true, y_pred, labels=None):
    metrics_summary = precision_recall_fscore_support(
            y_true=y_true,
            y_pred=y_pred,
            labels=labels)
    weighted_avg = list(precision_recall_fscore_support(
            y_true=y_true,
            y_pred=y_pred,
            labels=labels,
            average='weighted'))
    macro_avg = list(precision_recall_fscore_support(
            y_true=y_true,
            y_pred=y_pred,
            labels=labels,
            average='macro'))
    accuracy = [np.nan, np.nan, accuracy_score(y_true=y_true, y_pred=y_pred), np.nan]
    metrics_sum_index = ['precision', 'recall', 'f1-score', 'support']
    class_report_df = pd.DataFrame(
        list(metrics_summary),
        index=metrics_sum_index,
        columns=labels)

    support = class_report_df.loc['support']
    total = support.sum()
    weighted_avg[-1] = total
    macro_avg[-1] = total
    accuracy[-1] = total

    class_report_df['accuracy'] = accuracy
    class_report_df['weighted avg'] = weighted_avg
    class_report_df['macro avg'] = macro_avg
    report = class_report_df.T
    report["support"] = report["support"].astype(int)
    return report


scores_text = ""
for model_name in ("nordic-lid.bin", "nordic-lid_all.bin"):
    print(
f"""
------------
{model_name}
------------
""")
    model = fasttext.load_model(model_name)

    train = pd.read_csv("train.csv")
    ddict = defaultdict(lambda: "---")
    for k in train.lang.unique().tolist():
        ddict[k] = k

    train["nordic-lid"] = train.progress_apply(lambda row: ddict[model.predict(row["text"].replace("\n", " "))[0][0][-3:]], axis=1)
    print("TRAIN")
    print(model.test("train.txt"))
    print(classification_report(train["lang"], train["nordic-lid"], digits=4))

    val = pd.read_csv("validation.csv")
    val["nordic-lid"] = val.progress_apply(lambda row: ddict[model.predict(row["text"].replace("\n", " "))[0][0][-3:]], axis=1)
    print("VALIDATION")
    print(model.test("validation.txt"))
    print(classification_report(val["lang"], val["nordic-lid"], digits=4))

    test = pd.read_csv("test.csv")
    test["nordic-lid"] = test.progress_apply(lambda row: ddict[model.predict(row["text"].replace("\n", " "))[0][0][-3:]], axis=1)
    print("TEST")
    print(model.test("test.txt"))
    print(classification_report(test["lang"], test["nordic-lid"], digits=4))

    if "_all" in model_name:
        train = pd.read_csv("train_all.csv")
        ddict = defaultdict(lambda: "---")
        for k in train.lang.unique().tolist():
            ddict[k] = k

        train["nordic-lid"] = train.progress_apply(lambda row: ddict[model.predict(row["text"].replace("\n", " "))[0][0][-3:]], axis=1)
        print("TRAIN ALL")
        print(model.test("train_all.txt"))
        print(classification_report(train["lang"], train["nordic-lid"], digits=4))

        val = pd.read_csv("validation_all.csv")
        val["nordic-lid"] = val.progress_apply(lambda row: ddict[model.predict(row["text"].replace("\n", " "))[0][0][-3:]], axis=1)
        print("VALIDATION ALL")
        print(model.test("validation_all.txt"))
        print(classification_report(val["lang"], val["nordic-lid"], digits=4))

        test = pd.read_csv("test_all.csv")
        test["nordic-lid"] = test.progress_apply(lambda row: ddict[model.predict(row["text"].replace("\n", " "))[0][0][-3:]], axis=1)
        print("TEST ALL")
        print(model.test("test_all.txt"))
        print(classification_report(test["lang"], test["nordic-lid"], digits=4))

        langs = pd.read_csv("train_all.csv").lang.unique().tolist()
    else:
        langs = pd.read_csv("train.csv").lang.unique().tolist()

    langs_df = pd.DataFrame({"ISO-639-3": langs}).sort_values("ISO-639-3")
    langs_df["Language"] = langs_df["ISO-639-3"].apply(names.__getitem__)
    langs_df = langs_df.set_index("ISO-639-3")

    report_df = pandas_classification_report(test["nordic-lid"], test["lang"], sorted(langs))
    scores = report_df.join(langs_df)
    scores.columns = map(str.title, scores.columns)
    scores.index.name = "ISO-639-3"
    scores = scores[["Language"] + [col.title() for col in scores.columns if col != "Language"]]
    scores_text += f"## {model_name}\n\n{scores.reset_index().to_markdown(index=False, floatfmt='.4f')}\n\n"

    print()

print(scores_text)
Path("./scores.md").write_text(scores_text)