1,000,000 steps
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 242.26 +/- 13.34
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7ef6814950>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7ef68149e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7ef6814a70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7ef6814b00>", "_build": "<function ActorCriticPolicy._build at 0x7f7ef6814b90>", "forward": "<function ActorCriticPolicy.forward at 0x7f7ef6814c20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7ef6814cb0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7ef6814d40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7ef6814dd0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7ef6814e60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7ef6814ef0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7ef67ed1b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651867234.4589124, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPNCsj2ur6C6TlWOvbz9IbMCz++6gJAOMwAAAAAAAIA/msvbPSkERroC+ZY1XTDvMB0Wdzvqs6u0AAAAAAAAgD8akNs9iRMAP7sinj0LvJW+3XaCPRsLYz0AAAAAAAAAAMApeD4ryDc/71KGvdD3lr6ceQk+vv/AvQAAAAAAAAAAzcCpvAVk67vjWNc8tYgLPRbXPL3wqOQ9AACAPwAAgD8zrpc+WelEPxZf0D3rgN2+s1qQPixmBr4AAAAAAAAAADOz9Tqkc3y7/hCGvsYOUL7GzWW95holPwAAgD8AAAAAzZwBPXqEOT5CtRO+2t4xvjc3Gb0N0QY7AAAAAAAAAACaI0S852WTP37iBr2+qrq+/s8hPJIzWbwAAAAAAAAAAGae77zhnII9gwSTPdSKZ74yNSI9Zk+2vAAAAAAAAAAA8w+APSSBCTxNtQU8Qvs6vvv4sT1gYK+7AAAAAAAAAABN6j09v4gZPk6oH76kyBC+hH2ovaLoUL0AAAAAAAAAAAARg72vjFs/RilVPPARyr46v1i9s7+KvAAAAAAAAAAAJnOVvfbUTLr+lMa6o1JHtkXBwznqeOM5AAAAAAAAAABarRG++j8cPzUpFD7zWpG+7XJGvAhqmT0AAAAAAAAAAM0TLD2rWXI/xRw2PTmPyL4XdiK8aqp9PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUfcBSC14cUCUhpRSlIwBbJRNDQGMAXSUR0CoWpco6S1WdX2UKGgGaAloD0MIgCctXNZCcUCUhpRSlGgVTTwBaBZHQKhasaisXBR1fZQoaAZoCWgPQwgmGw+22JxvQJSGlFKUaBVNFQFoFkdAqFrTCUHIIXV9lChoBmgJaA9DCFXcuMV8j29AlIaUUpRoFU0VAWgWR0CoW5eMZP2xdX2UKGgGaAloD0MIeHx71+BOcECUhpRSlGgVTS8BaBZHQKhcfundfsx1fZQoaAZoCWgPQwjbwYh9wvpxQJSGlFKUaBVNCAFoFkdAqF0W3z+WGHV9lChoBmgJaA9DCJ6ymq6n6XFAlIaUUpRoFU0pAWgWR0CoXT74BV+7dX2UKGgGaAloD0MIiljEsAPPckCUhpRSlGgVTVsBaBZHQKhdhpD/lyR1fZQoaAZoCWgPQwhCWmPQyfNyQJSGlFKUaBVNjgFoFkdAqF2pyMkyDnV9lChoBmgJaA9DCFsJ3SVxxnFAlIaUUpRoFU0VAWgWR0CoXgsWGh24dX2UKGgGaAloD0MIiUD1D6JHcUCUhpRSlGgVTU4BaBZHQKheIlAu7H11fZQoaAZoCWgPQwhse7slOaRDQJSGlFKUaBVL6mgWR0CoXit52QnydX2UKGgGaAloD0MIzoqoib4NcUCUhpRSlGgVTUgBaBZHQKhfLl18stl1fZQoaAZoCWgPQwgaMEj6tNNxQJSGlFKUaBVNRgFoFkdAqF8tW8yvcXV9lChoBmgJaA9DCKDBps4jPnBAlIaUUpRoFU1VAWgWR0CoX1KqXF98dX2UKGgGaAloD0MIEwoRcMiKcUCUhpRSlGgVTXkBaBZHQKhfyiKR+0B1fZQoaAZoCWgPQwil+PiE7AdtQJSGlFKUaBVNEwFoFkdAqGAxMQEpzHV9lChoBmgJaA9DCCdQxCKG129AlIaUUpRoFU0vAWgWR0CoYNgiu+yrdX2UKGgGaAloD0MImrM+5RhmcUCUhpRSlGgVTTABaBZHQKhg/Q7cO9Z1fZQoaAZoCWgPQwiPcjCbgA5zQJSGlFKUaBVNFwFoFkdAqGFHfO2RaHV9lChoBmgJaA9DCJaWkXrPfW9AlIaUUpRoFU0JAWgWR0CoYduXu3MIdX2UKGgGaAloD0MIavmBq7y1cUCUhpRSlGgVTQ4BaBZHQKhjIFs54np1fZQoaAZoCWgPQwhFDhE35/NwQJSGlFKUaBVNKQFoFkdAqGMqncclxHV9lChoBmgJaA9DCILIIk084m9AlIaUUpRoFU0tAWgWR0CoY2jVH4GmdX2UKGgGaAloD0MIlZuopTlUa0CUhpRSlGgVTS4BaBZHQKhjseIVM251fZQoaAZoCWgPQwhQb0bNV4VuQJSGlFKUaBVNEwFoFkdAqGPCnivPknV9lChoBmgJaA9DCLyTT4/t2XFAlIaUUpRoFU05AWgWR0CoZG1BMSK4dX2UKGgGaAloD0MIPIidKTQ3cECUhpRSlGgVTTgBaBZHQKhkfzmOlwd1fZQoaAZoCWgPQwiRuTKodltwQJSGlFKUaBVNJQFoFkdAqGVUIeHSGHV9lChoBmgJaA9DCNwSueCMqnBAlIaUUpRoFU01AWgWR0CoZYGG/N7jdX2UKGgGaAloD0MISl0yjlH0cUCUhpRSlGgVTR0BaBZHQKhltBciW3V1fZQoaAZoCWgPQwjBkNWtHk5tQJSGlFKUaBVNSAFoFkdAqGXicf/3nXV9lChoBmgJaA9DCAGiYMbUVXFAlIaUUpRoFU0lAWgWR0CoZkFNlAeJdX2UKGgGaAloD0MIUyCzs+i8ckCUhpRSlGgVTQYBaBZHQKhmb31SOzZ1fZQoaAZoCWgPQwhVouwt5dFuQJSGlFKUaBVNTgFoFkdAqGfD/MnqmnV9lChoBmgJaA9DCLVTc7lBInFAlIaUUpRoFU1AAWgWR0CoZ/RXnyNGdX2UKGgGaAloD0MI0clS6z1KcUCUhpRSlGgVTSUBaBZHQKhn/GLk0aZ1fZQoaAZoCWgPQwgk8Ieff6BwQJSGlFKUaBVNJQFoFkdAqGmA11nuiXV9lChoBmgJaA9DCOBNt+yQkG9AlIaUUpRoFU02AWgWR0CoaaaHbh3rdX2UKGgGaAloD0MIWMoyxLEeSUCUhpRSlGgVS9JoFkdAqGmyJl8PWnV9lChoBmgJaA9DCCKrWz2nl3BAlIaUUpRoFUv+aBZHQKhpuUD+zdF1fZQoaAZoCWgPQwhd+MH51N1wQJSGlFKUaBVNLAFoFkdAqGoCgZjx1HV9lChoBmgJaA9DCDUk7rG0hnBAlIaUUpRoFU06AWgWR0CoajqlP8AJdX2UKGgGaAloD0MIogkUsQjsb0CUhpRSlGgVTTYBaBZHQKhq8Ucn3L51fZQoaAZoCWgPQwgR/G8l++xwQJSGlFKUaBVNCwFoFkdAqGtuqgh8pnV9lChoBmgJaA9DCLubpzokYHFAlIaUUpRoFU0nAWgWR0Coa5xVyWAxdX2UKGgGaAloD0MIO1J955fjckCUhpRSlGgVTRUBaBZHQKhsCvllsgx1fZQoaAZoCWgPQwhmguFcA4RwQJSGlFKUaBVNWgFoFkdAqGztLteD4HV9lChoBmgJaA9DCCWS6GUUf3BAlIaUUpRoFU1aAWgWR0CofZslb/wRdX2UKGgGaAloD0MIZktWRfgTcUCUhpRSlGgVTUABaBZHQKh+jKGtZFJ1fZQoaAZoCWgPQwiXqN4aWN1wQJSGlFKUaBVNYAFoFkdAqH+xlFtsN3V9lChoBmgJaA9DCJ6WH7hKTW1AlIaUUpRoFU0aAWgWR0Cof9tyo4uLdX2UKGgGaAloD0MIyXGndHBKcECUhpRSlGgVTR0BaBZHQKh//lxOtXB1fZQoaAZoCWgPQwj/sRAdAolwQJSGlFKUaBVNbAFoFkdAqH/+9Jz1b3V9lChoBmgJaA9DCN4CCYofUmxAlIaUUpRoFU0nAWgWR0CogAxO1v2odX2UKGgGaAloD0MIXD6Skt57ckCUhpRSlGgVTS8BaBZHQKiAaz+FUQ11fZQoaAZoCWgPQwivCP63kkpvQJSGlFKUaBVNGgFoFkdAqIG9ZxJd0XV9lChoBmgJaA9DCN46/3YZ53BAlIaUUpRoFU07AWgWR0CogfF0PpY+dX2UKGgGaAloD0MIUMJM2z8gbkCUhpRSlGgVTWMBaBZHQKiCD+YMOPN1fZQoaAZoCWgPQwga/Wg45W5yQJSGlFKUaBVNFQFoFkdAqIJEpy6tknV9lChoBmgJaA9DCHGS5o+pFHBAlIaUUpRoFU0wAWgWR0CoglyIgvDhdX2UKGgGaAloD0MIGTc10HzkbkCUhpRSlGgVTUcBaBZHQKiEC+C9RJp1fZQoaAZoCWgPQwhhGRu62aNMQJSGlFKUaBVL2mgWR0CohI/gBLf2dX2UKGgGaAloD0MIBp57D5ccQUCUhpRSlGgVS/xoFkdAqIVUCPp6hXV9lChoBmgJaA9DCNNmnIZoQHFAlIaUUpRoFU1bAWgWR0CohWh2fTTfdX2UKGgGaAloD0MIr8+c9akTbUCUhpRSlGgVTTwBaBZHQKiFlQVsUIt1fZQoaAZoCWgPQwhSYWwhyMRrQJSGlFKUaBVNEwFoFkdAqIY5A8jiXXV9lChoBmgJaA9DCKNZ2T5kCHBAlIaUUpRoFU0oAWgWR0CohkJ/XoTxdX2UKGgGaAloD0MIgGCOHr84cUCUhpRSlGgVTUABaBZHQKiGi0NSZSh1fZQoaAZoCWgPQwgj2SPUTCBxQJSGlFKUaBVNFgFoFkdAqIeVWMju8nV9lChoBmgJaA9DCOI/3UCBbHJAlIaUUpRoFU1zAWgWR0Coh7mdiDujdX2UKGgGaAloD0MIIywq4nTAb0CUhpRSlGgVTQ8BaBZHQKiHwJ53Tux1fZQoaAZoCWgPQwh0eXO4FodxQJSGlFKUaBVNJwFoFkdAqIgVrj5sTHV9lChoBmgJaA9DCLmq7LsiIG9AlIaUUpRoFU0ZAWgWR0CoiDdY4hlldX2UKGgGaAloD0MI42w6AjiSY0CUhpRSlGgVTegDaBZHQKiIXHxSYPZ1fZQoaAZoCWgPQwjylxb1SaFwQJSGlFKUaBVNKwFoFkdAqIhwZMtbtHV9lChoBmgJaA9DCNCzWfU5xWlAlIaUUpRoFU3EAmgWR0CoiPitJWeZdX2UKGgGaAloD0MIgxjo2hcwUkCUhpRSlGgVS9FoFkdAqIl2s3hn8XV9lChoBmgJaA9DCLDiVGvhOnJAlIaUUpRoFU0/AWgWR0Coindic5KfdX2UKGgGaAloD0MIMUW5ND6ycECUhpRSlGgVTTgBaBZHQKiK1jH4oJB1fZQoaAZoCWgPQwh40VeQZp1vQJSGlFKUaBVNEgFoFkdAqIr0aQ3gk3V9lChoBmgJaA9DCAtET8ok8m9AlIaUUpRoFU00AWgWR0Coi3eGoJiRdX2UKGgGaAloD0MIwqT4+MSMcUCUhpRSlGgVTRoBaBZHQKiL0ZwXIlt1fZQoaAZoCWgPQwi2SrA4HL5tQJSGlFKUaBVNGwFoFkdAqIwoWznienV9lChoBmgJaA9DCAtCeR8HI3FAlIaUUpRoFU0pAWgWR0CojCwOvt+kdX2UKGgGaAloD0MIQl96+3O2UkCUhpRSlGgVS9loFkdAqIyqTY/Vy3V9lChoBmgJaA9DCK32sBcK73BAlIaUUpRoFU0qAWgWR0CojYCG34KydX2UKGgGaAloD0MIMxr5vGKjb0CUhpRSlGgVTRQBaBZHQKiNl+YMOPN1fZQoaAZoCWgPQwjulXmr7o9wQJSGlFKUaBVNNAFoFkdAqI3azLOiWXV9lChoBmgJaA9DCCMw1jew2m1AlIaUUpRoFU0eAWgWR0Coje07CBPLdX2UKGgGaAloD0MI1vz4S4vBckCUhpRSlGgVTSUBaBZHQKiORzz3AVR1fZQoaAZoCWgPQwj9gt2w7bNvQJSGlFKUaBVNTwFoFkdAqI5QudwvQHV9lChoBmgJaA9DCJQu/UvSUHJAlIaUUpRoFU0tAWgWR0CojwYsmOU/dX2UKGgGaAloD0MIxeOiWgTHcECUhpRSlGgVTTkBaBZHQKiP0jopx3p1fZQoaAZoCWgPQwhhMlUwKm5sQJSGlFKUaBVNHgFoFkdAqJBQYP5HmXV9lChoBmgJaA9DCGaEtweh9G9AlIaUUpRoFU0YAWgWR0CokKwqy4WldX2UKGgGaAloD0MIKIBiZAk3cECUhpRSlGgVTQoBaBZHQKiQ2MbWEsd1fZQoaAZoCWgPQwgb2CrB4jJNQJSGlFKUaBVL+GgWR0CokSRvegtfdX2UKGgGaAloD0MIqRWm77XFcUCUhpRSlGgVTQYBaBZHQKiRcpvP1L91fZQoaAZoCWgPQwilZg+0gnZvQJSGlFKUaBVNIAFoFkdAqJGm96C17nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ff92af205d6913b6f672b5a9a8a8edbde029615239a301c6ec95bafd39e305fa
|
3 |
+
size 144042
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f7ef6814950>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7ef68149e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7ef6814a70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7ef6814b00>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f7ef6814b90>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f7ef6814c20>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7ef6814cb0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f7ef6814d40>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7ef6814dd0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7ef6814e60>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7ef6814ef0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f7ef67ed1b0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651867234.4589124,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPNCsj2ur6C6TlWOvbz9IbMCz++6gJAOMwAAAAAAAIA/msvbPSkERroC+ZY1XTDvMB0Wdzvqs6u0AAAAAAAAgD8akNs9iRMAP7sinj0LvJW+3XaCPRsLYz0AAAAAAAAAAMApeD4ryDc/71KGvdD3lr6ceQk+vv/AvQAAAAAAAAAAzcCpvAVk67vjWNc8tYgLPRbXPL3wqOQ9AACAPwAAgD8zrpc+WelEPxZf0D3rgN2+s1qQPixmBr4AAAAAAAAAADOz9Tqkc3y7/hCGvsYOUL7GzWW95holPwAAgD8AAAAAzZwBPXqEOT5CtRO+2t4xvjc3Gb0N0QY7AAAAAAAAAACaI0S852WTP37iBr2+qrq+/s8hPJIzWbwAAAAAAAAAAGae77zhnII9gwSTPdSKZ74yNSI9Zk+2vAAAAAAAAAAA8w+APSSBCTxNtQU8Qvs6vvv4sT1gYK+7AAAAAAAAAABN6j09v4gZPk6oH76kyBC+hH2ovaLoUL0AAAAAAAAAAAARg72vjFs/RilVPPARyr46v1i9s7+KvAAAAAAAAAAAJnOVvfbUTLr+lMa6o1JHtkXBwznqeOM5AAAAAAAAAABarRG++j8cPzUpFD7zWpG+7XJGvAhqmT0AAAAAAAAAAM0TLD2rWXI/xRw2PTmPyL4XdiK8aqp9PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUfcBSC14cUCUhpRSlIwBbJRNDQGMAXSUR0CoWpco6S1WdX2UKGgGaAloD0MIgCctXNZCcUCUhpRSlGgVTTwBaBZHQKhasaisXBR1fZQoaAZoCWgPQwgmGw+22JxvQJSGlFKUaBVNFQFoFkdAqFrTCUHIIXV9lChoBmgJaA9DCFXcuMV8j29AlIaUUpRoFU0VAWgWR0CoW5eMZP2xdX2UKGgGaAloD0MIeHx71+BOcECUhpRSlGgVTS8BaBZHQKhcfundfsx1fZQoaAZoCWgPQwjbwYh9wvpxQJSGlFKUaBVNCAFoFkdAqF0W3z+WGHV9lChoBmgJaA9DCJ6ymq6n6XFAlIaUUpRoFU0pAWgWR0CoXT74BV+7dX2UKGgGaAloD0MIiljEsAPPckCUhpRSlGgVTVsBaBZHQKhdhpD/lyR1fZQoaAZoCWgPQwhCWmPQyfNyQJSGlFKUaBVNjgFoFkdAqF2pyMkyDnV9lChoBmgJaA9DCFsJ3SVxxnFAlIaUUpRoFU0VAWgWR0CoXgsWGh24dX2UKGgGaAloD0MIiUD1D6JHcUCUhpRSlGgVTU4BaBZHQKheIlAu7H11fZQoaAZoCWgPQwhse7slOaRDQJSGlFKUaBVL6mgWR0CoXit52QnydX2UKGgGaAloD0MIzoqoib4NcUCUhpRSlGgVTUgBaBZHQKhfLl18stl1fZQoaAZoCWgPQwgaMEj6tNNxQJSGlFKUaBVNRgFoFkdAqF8tW8yvcXV9lChoBmgJaA9DCKDBps4jPnBAlIaUUpRoFU1VAWgWR0CoX1KqXF98dX2UKGgGaAloD0MIEwoRcMiKcUCUhpRSlGgVTXkBaBZHQKhfyiKR+0B1fZQoaAZoCWgPQwil+PiE7AdtQJSGlFKUaBVNEwFoFkdAqGAxMQEpzHV9lChoBmgJaA9DCCdQxCKG129AlIaUUpRoFU0vAWgWR0CoYNgiu+yrdX2UKGgGaAloD0MImrM+5RhmcUCUhpRSlGgVTTABaBZHQKhg/Q7cO9Z1fZQoaAZoCWgPQwiPcjCbgA5zQJSGlFKUaBVNFwFoFkdAqGFHfO2RaHV9lChoBmgJaA9DCJaWkXrPfW9AlIaUUpRoFU0JAWgWR0CoYduXu3MIdX2UKGgGaAloD0MIavmBq7y1cUCUhpRSlGgVTQ4BaBZHQKhjIFs54np1fZQoaAZoCWgPQwhFDhE35/NwQJSGlFKUaBVNKQFoFkdAqGMqncclxHV9lChoBmgJaA9DCILIIk084m9AlIaUUpRoFU0tAWgWR0CoY2jVH4GmdX2UKGgGaAloD0MIlZuopTlUa0CUhpRSlGgVTS4BaBZHQKhjseIVM251fZQoaAZoCWgPQwhQb0bNV4VuQJSGlFKUaBVNEwFoFkdAqGPCnivPknV9lChoBmgJaA9DCLyTT4/t2XFAlIaUUpRoFU05AWgWR0CoZG1BMSK4dX2UKGgGaAloD0MIPIidKTQ3cECUhpRSlGgVTTgBaBZHQKhkfzmOlwd1fZQoaAZoCWgPQwiRuTKodltwQJSGlFKUaBVNJQFoFkdAqGVUIeHSGHV9lChoBmgJaA9DCNwSueCMqnBAlIaUUpRoFU01AWgWR0CoZYGG/N7jdX2UKGgGaAloD0MISl0yjlH0cUCUhpRSlGgVTR0BaBZHQKhltBciW3V1fZQoaAZoCWgPQwjBkNWtHk5tQJSGlFKUaBVNSAFoFkdAqGXicf/3nXV9lChoBmgJaA9DCAGiYMbUVXFAlIaUUpRoFU0lAWgWR0CoZkFNlAeJdX2UKGgGaAloD0MIUyCzs+i8ckCUhpRSlGgVTQYBaBZHQKhmb31SOzZ1fZQoaAZoCWgPQwhVouwt5dFuQJSGlFKUaBVNTgFoFkdAqGfD/MnqmnV9lChoBmgJaA9DCLVTc7lBInFAlIaUUpRoFU1AAWgWR0CoZ/RXnyNGdX2UKGgGaAloD0MI0clS6z1KcUCUhpRSlGgVTSUBaBZHQKhn/GLk0aZ1fZQoaAZoCWgPQwgk8Ieff6BwQJSGlFKUaBVNJQFoFkdAqGmA11nuiXV9lChoBmgJaA9DCOBNt+yQkG9AlIaUUpRoFU02AWgWR0CoaaaHbh3rdX2UKGgGaAloD0MIWMoyxLEeSUCUhpRSlGgVS9JoFkdAqGmyJl8PWnV9lChoBmgJaA9DCCKrWz2nl3BAlIaUUpRoFUv+aBZHQKhpuUD+zdF1fZQoaAZoCWgPQwhd+MH51N1wQJSGlFKUaBVNLAFoFkdAqGoCgZjx1HV9lChoBmgJaA9DCDUk7rG0hnBAlIaUUpRoFU06AWgWR0CoajqlP8AJdX2UKGgGaAloD0MIogkUsQjsb0CUhpRSlGgVTTYBaBZHQKhq8Ucn3L51fZQoaAZoCWgPQwgR/G8l++xwQJSGlFKUaBVNCwFoFkdAqGtuqgh8pnV9lChoBmgJaA9DCLubpzokYHFAlIaUUpRoFU0nAWgWR0Coa5xVyWAxdX2UKGgGaAloD0MIO1J955fjckCUhpRSlGgVTRUBaBZHQKhsCvllsgx1fZQoaAZoCWgPQwhmguFcA4RwQJSGlFKUaBVNWgFoFkdAqGztLteD4HV9lChoBmgJaA9DCCWS6GUUf3BAlIaUUpRoFU1aAWgWR0CofZslb/wRdX2UKGgGaAloD0MIZktWRfgTcUCUhpRSlGgVTUABaBZHQKh+jKGtZFJ1fZQoaAZoCWgPQwiXqN4aWN1wQJSGlFKUaBVNYAFoFkdAqH+xlFtsN3V9lChoBmgJaA9DCJ6WH7hKTW1AlIaUUpRoFU0aAWgWR0Cof9tyo4uLdX2UKGgGaAloD0MIyXGndHBKcECUhpRSlGgVTR0BaBZHQKh//lxOtXB1fZQoaAZoCWgPQwj/sRAdAolwQJSGlFKUaBVNbAFoFkdAqH/+9Jz1b3V9lChoBmgJaA9DCN4CCYofUmxAlIaUUpRoFU0nAWgWR0CogAxO1v2odX2UKGgGaAloD0MIXD6Skt57ckCUhpRSlGgVTS8BaBZHQKiAaz+FUQ11fZQoaAZoCWgPQwivCP63kkpvQJSGlFKUaBVNGgFoFkdAqIG9ZxJd0XV9lChoBmgJaA9DCN46/3YZ53BAlIaUUpRoFU07AWgWR0CogfF0PpY+dX2UKGgGaAloD0MIUMJM2z8gbkCUhpRSlGgVTWMBaBZHQKiCD+YMOPN1fZQoaAZoCWgPQwga/Wg45W5yQJSGlFKUaBVNFQFoFkdAqIJEpy6tknV9lChoBmgJaA9DCHGS5o+pFHBAlIaUUpRoFU0wAWgWR0CoglyIgvDhdX2UKGgGaAloD0MIGTc10HzkbkCUhpRSlGgVTUcBaBZHQKiEC+C9RJp1fZQoaAZoCWgPQwhhGRu62aNMQJSGlFKUaBVL2mgWR0CohI/gBLf2dX2UKGgGaAloD0MIBp57D5ccQUCUhpRSlGgVS/xoFkdAqIVUCPp6hXV9lChoBmgJaA9DCNNmnIZoQHFAlIaUUpRoFU1bAWgWR0CohWh2fTTfdX2UKGgGaAloD0MIr8+c9akTbUCUhpRSlGgVTTwBaBZHQKiFlQVsUIt1fZQoaAZoCWgPQwhSYWwhyMRrQJSGlFKUaBVNEwFoFkdAqIY5A8jiXXV9lChoBmgJaA9DCKNZ2T5kCHBAlIaUUpRoFU0oAWgWR0CohkJ/XoTxdX2UKGgGaAloD0MIgGCOHr84cUCUhpRSlGgVTUABaBZHQKiGi0NSZSh1fZQoaAZoCWgPQwgj2SPUTCBxQJSGlFKUaBVNFgFoFkdAqIeVWMju8nV9lChoBmgJaA9DCOI/3UCBbHJAlIaUUpRoFU1zAWgWR0Coh7mdiDujdX2UKGgGaAloD0MIIywq4nTAb0CUhpRSlGgVTQ8BaBZHQKiHwJ53Tux1fZQoaAZoCWgPQwh0eXO4FodxQJSGlFKUaBVNJwFoFkdAqIgVrj5sTHV9lChoBmgJaA9DCLmq7LsiIG9AlIaUUpRoFU0ZAWgWR0CoiDdY4hlldX2UKGgGaAloD0MI42w6AjiSY0CUhpRSlGgVTegDaBZHQKiIXHxSYPZ1fZQoaAZoCWgPQwjylxb1SaFwQJSGlFKUaBVNKwFoFkdAqIhwZMtbtHV9lChoBmgJaA9DCNCzWfU5xWlAlIaUUpRoFU3EAmgWR0CoiPitJWeZdX2UKGgGaAloD0MIgxjo2hcwUkCUhpRSlGgVS9FoFkdAqIl2s3hn8XV9lChoBmgJaA9DCLDiVGvhOnJAlIaUUpRoFU0/AWgWR0Coindic5KfdX2UKGgGaAloD0MIMUW5ND6ycECUhpRSlGgVTTgBaBZHQKiK1jH4oJB1fZQoaAZoCWgPQwh40VeQZp1vQJSGlFKUaBVNEgFoFkdAqIr0aQ3gk3V9lChoBmgJaA9DCAtET8ok8m9AlIaUUpRoFU00AWgWR0Coi3eGoJiRdX2UKGgGaAloD0MIwqT4+MSMcUCUhpRSlGgVTRoBaBZHQKiL0ZwXIlt1fZQoaAZoCWgPQwi2SrA4HL5tQJSGlFKUaBVNGwFoFkdAqIwoWznienV9lChoBmgJaA9DCAtCeR8HI3FAlIaUUpRoFU0pAWgWR0CojCwOvt+kdX2UKGgGaAloD0MIQl96+3O2UkCUhpRSlGgVS9loFkdAqIyqTY/Vy3V9lChoBmgJaA9DCK32sBcK73BAlIaUUpRoFU0qAWgWR0CojYCG34KydX2UKGgGaAloD0MIMxr5vGKjb0CUhpRSlGgVTRQBaBZHQKiNl+YMOPN1fZQoaAZoCWgPQwjulXmr7o9wQJSGlFKUaBVNNAFoFkdAqI3azLOiWXV9lChoBmgJaA9DCCMw1jew2m1AlIaUUpRoFU0eAWgWR0Coje07CBPLdX2UKGgGaAloD0MI1vz4S4vBckCUhpRSlGgVTSUBaBZHQKiORzz3AVR1fZQoaAZoCWgPQwj9gt2w7bNvQJSGlFKUaBVNTwFoFkdAqI5QudwvQHV9lChoBmgJaA9DCJQu/UvSUHJAlIaUUpRoFU0tAWgWR0CojwYsmOU/dX2UKGgGaAloD0MIxeOiWgTHcECUhpRSlGgVTTkBaBZHQKiP0jopx3p1fZQoaAZoCWgPQwhhMlUwKm5sQJSGlFKUaBVNHgFoFkdAqJBQYP5HmXV9lChoBmgJaA9DCGaEtweh9G9AlIaUUpRoFU0YAWgWR0CokKwqy4WldX2UKGgGaAloD0MIKIBiZAk3cECUhpRSlGgVTQoBaBZHQKiQ2MbWEsd1fZQoaAZoCWgPQwgb2CrB4jJNQJSGlFKUaBVL+GgWR0CokSRvegtfdX2UKGgGaAloD0MIqRWm77XFcUCUhpRSlGgVTQYBaBZHQKiRcpvP1L91fZQoaAZoCWgPQwilZg+0gnZvQJSGlFKUaBVNIAFoFkdAqJGm96C17nVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f6ae295e62477fb9d01b55d814377b901813823eb0cc549709444412b899a4d9
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:239cce98cfa4b3b684b0635bc1a7e92851492dcbfd9afb250515d1fbe93adf7c
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f47b5d613e6dd5178d18c659b8ab3dd1b2c16f0bcf74ba308b0a63fff67b8c38
|
3 |
+
size 216909
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 242.2596052679843, "std_reward": 13.342361939206395, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T20:35:28.388183"}
|