NathanYee commited on
Commit
c6157f7
·
1 Parent(s): e71d4f1

1,000,000 steps

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 242.26 +/- 13.34
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7ef6814950>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7ef68149e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7ef6814a70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7ef6814b00>", "_build": "<function ActorCriticPolicy._build at 0x7f7ef6814b90>", "forward": "<function ActorCriticPolicy.forward at 0x7f7ef6814c20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7ef6814cb0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7ef6814d40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7ef6814dd0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7ef6814e60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7ef6814ef0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7ef67ed1b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651867234.4589124, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPNCsj2ur6C6TlWOvbz9IbMCz++6gJAOMwAAAAAAAIA/msvbPSkERroC+ZY1XTDvMB0Wdzvqs6u0AAAAAAAAgD8akNs9iRMAP7sinj0LvJW+3XaCPRsLYz0AAAAAAAAAAMApeD4ryDc/71KGvdD3lr6ceQk+vv/AvQAAAAAAAAAAzcCpvAVk67vjWNc8tYgLPRbXPL3wqOQ9AACAPwAAgD8zrpc+WelEPxZf0D3rgN2+s1qQPixmBr4AAAAAAAAAADOz9Tqkc3y7/hCGvsYOUL7GzWW95holPwAAgD8AAAAAzZwBPXqEOT5CtRO+2t4xvjc3Gb0N0QY7AAAAAAAAAACaI0S852WTP37iBr2+qrq+/s8hPJIzWbwAAAAAAAAAAGae77zhnII9gwSTPdSKZ74yNSI9Zk+2vAAAAAAAAAAA8w+APSSBCTxNtQU8Qvs6vvv4sT1gYK+7AAAAAAAAAABN6j09v4gZPk6oH76kyBC+hH2ovaLoUL0AAAAAAAAAAAARg72vjFs/RilVPPARyr46v1i9s7+KvAAAAAAAAAAAJnOVvfbUTLr+lMa6o1JHtkXBwznqeOM5AAAAAAAAAABarRG++j8cPzUpFD7zWpG+7XJGvAhqmT0AAAAAAAAAAM0TLD2rWXI/xRw2PTmPyL4XdiK8aqp9PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUfcBSC14cUCUhpRSlIwBbJRNDQGMAXSUR0CoWpco6S1WdX2UKGgGaAloD0MIgCctXNZCcUCUhpRSlGgVTTwBaBZHQKhasaisXBR1fZQoaAZoCWgPQwgmGw+22JxvQJSGlFKUaBVNFQFoFkdAqFrTCUHIIXV9lChoBmgJaA9DCFXcuMV8j29AlIaUUpRoFU0VAWgWR0CoW5eMZP2xdX2UKGgGaAloD0MIeHx71+BOcECUhpRSlGgVTS8BaBZHQKhcfundfsx1fZQoaAZoCWgPQwjbwYh9wvpxQJSGlFKUaBVNCAFoFkdAqF0W3z+WGHV9lChoBmgJaA9DCJ6ymq6n6XFAlIaUUpRoFU0pAWgWR0CoXT74BV+7dX2UKGgGaAloD0MIiljEsAPPckCUhpRSlGgVTVsBaBZHQKhdhpD/lyR1fZQoaAZoCWgPQwhCWmPQyfNyQJSGlFKUaBVNjgFoFkdAqF2pyMkyDnV9lChoBmgJaA9DCFsJ3SVxxnFAlIaUUpRoFU0VAWgWR0CoXgsWGh24dX2UKGgGaAloD0MIiUD1D6JHcUCUhpRSlGgVTU4BaBZHQKheIlAu7H11fZQoaAZoCWgPQwhse7slOaRDQJSGlFKUaBVL6mgWR0CoXit52QnydX2UKGgGaAloD0MIzoqoib4NcUCUhpRSlGgVTUgBaBZHQKhfLl18stl1fZQoaAZoCWgPQwgaMEj6tNNxQJSGlFKUaBVNRgFoFkdAqF8tW8yvcXV9lChoBmgJaA9DCKDBps4jPnBAlIaUUpRoFU1VAWgWR0CoX1KqXF98dX2UKGgGaAloD0MIEwoRcMiKcUCUhpRSlGgVTXkBaBZHQKhfyiKR+0B1fZQoaAZoCWgPQwil+PiE7AdtQJSGlFKUaBVNEwFoFkdAqGAxMQEpzHV9lChoBmgJaA9DCCdQxCKG129AlIaUUpRoFU0vAWgWR0CoYNgiu+yrdX2UKGgGaAloD0MImrM+5RhmcUCUhpRSlGgVTTABaBZHQKhg/Q7cO9Z1fZQoaAZoCWgPQwiPcjCbgA5zQJSGlFKUaBVNFwFoFkdAqGFHfO2RaHV9lChoBmgJaA9DCJaWkXrPfW9AlIaUUpRoFU0JAWgWR0CoYduXu3MIdX2UKGgGaAloD0MIavmBq7y1cUCUhpRSlGgVTQ4BaBZHQKhjIFs54np1fZQoaAZoCWgPQwhFDhE35/NwQJSGlFKUaBVNKQFoFkdAqGMqncclxHV9lChoBmgJaA9DCILIIk084m9AlIaUUpRoFU0tAWgWR0CoY2jVH4GmdX2UKGgGaAloD0MIlZuopTlUa0CUhpRSlGgVTS4BaBZHQKhjseIVM251fZQoaAZoCWgPQwhQb0bNV4VuQJSGlFKUaBVNEwFoFkdAqGPCnivPknV9lChoBmgJaA9DCLyTT4/t2XFAlIaUUpRoFU05AWgWR0CoZG1BMSK4dX2UKGgGaAloD0MIPIidKTQ3cECUhpRSlGgVTTgBaBZHQKhkfzmOlwd1fZQoaAZoCWgPQwiRuTKodltwQJSGlFKUaBVNJQFoFkdAqGVUIeHSGHV9lChoBmgJaA9DCNwSueCMqnBAlIaUUpRoFU01AWgWR0CoZYGG/N7jdX2UKGgGaAloD0MISl0yjlH0cUCUhpRSlGgVTR0BaBZHQKhltBciW3V1fZQoaAZoCWgPQwjBkNWtHk5tQJSGlFKUaBVNSAFoFkdAqGXicf/3nXV9lChoBmgJaA9DCAGiYMbUVXFAlIaUUpRoFU0lAWgWR0CoZkFNlAeJdX2UKGgGaAloD0MIUyCzs+i8ckCUhpRSlGgVTQYBaBZHQKhmb31SOzZ1fZQoaAZoCWgPQwhVouwt5dFuQJSGlFKUaBVNTgFoFkdAqGfD/MnqmnV9lChoBmgJaA9DCLVTc7lBInFAlIaUUpRoFU1AAWgWR0CoZ/RXnyNGdX2UKGgGaAloD0MI0clS6z1KcUCUhpRSlGgVTSUBaBZHQKhn/GLk0aZ1fZQoaAZoCWgPQwgk8Ieff6BwQJSGlFKUaBVNJQFoFkdAqGmA11nuiXV9lChoBmgJaA9DCOBNt+yQkG9AlIaUUpRoFU02AWgWR0CoaaaHbh3rdX2UKGgGaAloD0MIWMoyxLEeSUCUhpRSlGgVS9JoFkdAqGmyJl8PWnV9lChoBmgJaA9DCCKrWz2nl3BAlIaUUpRoFUv+aBZHQKhpuUD+zdF1fZQoaAZoCWgPQwhd+MH51N1wQJSGlFKUaBVNLAFoFkdAqGoCgZjx1HV9lChoBmgJaA9DCDUk7rG0hnBAlIaUUpRoFU06AWgWR0CoajqlP8AJdX2UKGgGaAloD0MIogkUsQjsb0CUhpRSlGgVTTYBaBZHQKhq8Ucn3L51fZQoaAZoCWgPQwgR/G8l++xwQJSGlFKUaBVNCwFoFkdAqGtuqgh8pnV9lChoBmgJaA9DCLubpzokYHFAlIaUUpRoFU0nAWgWR0Coa5xVyWAxdX2UKGgGaAloD0MIO1J955fjckCUhpRSlGgVTRUBaBZHQKhsCvllsgx1fZQoaAZoCWgPQwhmguFcA4RwQJSGlFKUaBVNWgFoFkdAqGztLteD4HV9lChoBmgJaA9DCCWS6GUUf3BAlIaUUpRoFU1aAWgWR0CofZslb/wRdX2UKGgGaAloD0MIZktWRfgTcUCUhpRSlGgVTUABaBZHQKh+jKGtZFJ1fZQoaAZoCWgPQwiXqN4aWN1wQJSGlFKUaBVNYAFoFkdAqH+xlFtsN3V9lChoBmgJaA9DCJ6WH7hKTW1AlIaUUpRoFU0aAWgWR0Cof9tyo4uLdX2UKGgGaAloD0MIyXGndHBKcECUhpRSlGgVTR0BaBZHQKh//lxOtXB1fZQoaAZoCWgPQwj/sRAdAolwQJSGlFKUaBVNbAFoFkdAqH/+9Jz1b3V9lChoBmgJaA9DCN4CCYofUmxAlIaUUpRoFU0nAWgWR0CogAxO1v2odX2UKGgGaAloD0MIXD6Skt57ckCUhpRSlGgVTS8BaBZHQKiAaz+FUQ11fZQoaAZoCWgPQwivCP63kkpvQJSGlFKUaBVNGgFoFkdAqIG9ZxJd0XV9lChoBmgJaA9DCN46/3YZ53BAlIaUUpRoFU07AWgWR0CogfF0PpY+dX2UKGgGaAloD0MIUMJM2z8gbkCUhpRSlGgVTWMBaBZHQKiCD+YMOPN1fZQoaAZoCWgPQwga/Wg45W5yQJSGlFKUaBVNFQFoFkdAqIJEpy6tknV9lChoBmgJaA9DCHGS5o+pFHBAlIaUUpRoFU0wAWgWR0CoglyIgvDhdX2UKGgGaAloD0MIGTc10HzkbkCUhpRSlGgVTUcBaBZHQKiEC+C9RJp1fZQoaAZoCWgPQwhhGRu62aNMQJSGlFKUaBVL2mgWR0CohI/gBLf2dX2UKGgGaAloD0MIBp57D5ccQUCUhpRSlGgVS/xoFkdAqIVUCPp6hXV9lChoBmgJaA9DCNNmnIZoQHFAlIaUUpRoFU1bAWgWR0CohWh2fTTfdX2UKGgGaAloD0MIr8+c9akTbUCUhpRSlGgVTTwBaBZHQKiFlQVsUIt1fZQoaAZoCWgPQwhSYWwhyMRrQJSGlFKUaBVNEwFoFkdAqIY5A8jiXXV9lChoBmgJaA9DCKNZ2T5kCHBAlIaUUpRoFU0oAWgWR0CohkJ/XoTxdX2UKGgGaAloD0MIgGCOHr84cUCUhpRSlGgVTUABaBZHQKiGi0NSZSh1fZQoaAZoCWgPQwgj2SPUTCBxQJSGlFKUaBVNFgFoFkdAqIeVWMju8nV9lChoBmgJaA9DCOI/3UCBbHJAlIaUUpRoFU1zAWgWR0Coh7mdiDujdX2UKGgGaAloD0MIIywq4nTAb0CUhpRSlGgVTQ8BaBZHQKiHwJ53Tux1fZQoaAZoCWgPQwh0eXO4FodxQJSGlFKUaBVNJwFoFkdAqIgVrj5sTHV9lChoBmgJaA9DCLmq7LsiIG9AlIaUUpRoFU0ZAWgWR0CoiDdY4hlldX2UKGgGaAloD0MI42w6AjiSY0CUhpRSlGgVTegDaBZHQKiIXHxSYPZ1fZQoaAZoCWgPQwjylxb1SaFwQJSGlFKUaBVNKwFoFkdAqIhwZMtbtHV9lChoBmgJaA9DCNCzWfU5xWlAlIaUUpRoFU3EAmgWR0CoiPitJWeZdX2UKGgGaAloD0MIgxjo2hcwUkCUhpRSlGgVS9FoFkdAqIl2s3hn8XV9lChoBmgJaA9DCLDiVGvhOnJAlIaUUpRoFU0/AWgWR0Coindic5KfdX2UKGgGaAloD0MIMUW5ND6ycECUhpRSlGgVTTgBaBZHQKiK1jH4oJB1fZQoaAZoCWgPQwh40VeQZp1vQJSGlFKUaBVNEgFoFkdAqIr0aQ3gk3V9lChoBmgJaA9DCAtET8ok8m9AlIaUUpRoFU00AWgWR0Coi3eGoJiRdX2UKGgGaAloD0MIwqT4+MSMcUCUhpRSlGgVTRoBaBZHQKiL0ZwXIlt1fZQoaAZoCWgPQwi2SrA4HL5tQJSGlFKUaBVNGwFoFkdAqIwoWznienV9lChoBmgJaA9DCAtCeR8HI3FAlIaUUpRoFU0pAWgWR0CojCwOvt+kdX2UKGgGaAloD0MIQl96+3O2UkCUhpRSlGgVS9loFkdAqIyqTY/Vy3V9lChoBmgJaA9DCK32sBcK73BAlIaUUpRoFU0qAWgWR0CojYCG34KydX2UKGgGaAloD0MIMxr5vGKjb0CUhpRSlGgVTRQBaBZHQKiNl+YMOPN1fZQoaAZoCWgPQwjulXmr7o9wQJSGlFKUaBVNNAFoFkdAqI3azLOiWXV9lChoBmgJaA9DCCMw1jew2m1AlIaUUpRoFU0eAWgWR0Coje07CBPLdX2UKGgGaAloD0MI1vz4S4vBckCUhpRSlGgVTSUBaBZHQKiORzz3AVR1fZQoaAZoCWgPQwj9gt2w7bNvQJSGlFKUaBVNTwFoFkdAqI5QudwvQHV9lChoBmgJaA9DCJQu/UvSUHJAlIaUUpRoFU0tAWgWR0CojwYsmOU/dX2UKGgGaAloD0MIxeOiWgTHcECUhpRSlGgVTTkBaBZHQKiP0jopx3p1fZQoaAZoCWgPQwhhMlUwKm5sQJSGlFKUaBVNHgFoFkdAqJBQYP5HmXV9lChoBmgJaA9DCGaEtweh9G9AlIaUUpRoFU0YAWgWR0CokKwqy4WldX2UKGgGaAloD0MIKIBiZAk3cECUhpRSlGgVTQoBaBZHQKiQ2MbWEsd1fZQoaAZoCWgPQwgb2CrB4jJNQJSGlFKUaBVL+GgWR0CokSRvegtfdX2UKGgGaAloD0MIqRWm77XFcUCUhpRSlGgVTQYBaBZHQKiRcpvP1L91fZQoaAZoCWgPQwilZg+0gnZvQJSGlFKUaBVNIAFoFkdAqJGm96C17nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff92af205d6913b6f672b5a9a8a8edbde029615239a301c6ec95bafd39e305fa
3
+ size 144042
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7ef6814950>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7ef68149e0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7ef6814a70>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7ef6814b00>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f7ef6814b90>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f7ef6814c20>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7ef6814cb0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f7ef6814d40>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7ef6814dd0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7ef6814e60>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7ef6814ef0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f7ef67ed1b0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1651867234.4589124,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPNCsj2ur6C6TlWOvbz9IbMCz++6gJAOMwAAAAAAAIA/msvbPSkERroC+ZY1XTDvMB0Wdzvqs6u0AAAAAAAAgD8akNs9iRMAP7sinj0LvJW+3XaCPRsLYz0AAAAAAAAAAMApeD4ryDc/71KGvdD3lr6ceQk+vv/AvQAAAAAAAAAAzcCpvAVk67vjWNc8tYgLPRbXPL3wqOQ9AACAPwAAgD8zrpc+WelEPxZf0D3rgN2+s1qQPixmBr4AAAAAAAAAADOz9Tqkc3y7/hCGvsYOUL7GzWW95holPwAAgD8AAAAAzZwBPXqEOT5CtRO+2t4xvjc3Gb0N0QY7AAAAAAAAAACaI0S852WTP37iBr2+qrq+/s8hPJIzWbwAAAAAAAAAAGae77zhnII9gwSTPdSKZ74yNSI9Zk+2vAAAAAAAAAAA8w+APSSBCTxNtQU8Qvs6vvv4sT1gYK+7AAAAAAAAAABN6j09v4gZPk6oH76kyBC+hH2ovaLoUL0AAAAAAAAAAAARg72vjFs/RilVPPARyr46v1i9s7+KvAAAAAAAAAAAJnOVvfbUTLr+lMa6o1JHtkXBwznqeOM5AAAAAAAAAABarRG++j8cPzUpFD7zWpG+7XJGvAhqmT0AAAAAAAAAAM0TLD2rWXI/xRw2PTmPyL4XdiK8aqp9PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUfcBSC14cUCUhpRSlIwBbJRNDQGMAXSUR0CoWpco6S1WdX2UKGgGaAloD0MIgCctXNZCcUCUhpRSlGgVTTwBaBZHQKhasaisXBR1fZQoaAZoCWgPQwgmGw+22JxvQJSGlFKUaBVNFQFoFkdAqFrTCUHIIXV9lChoBmgJaA9DCFXcuMV8j29AlIaUUpRoFU0VAWgWR0CoW5eMZP2xdX2UKGgGaAloD0MIeHx71+BOcECUhpRSlGgVTS8BaBZHQKhcfundfsx1fZQoaAZoCWgPQwjbwYh9wvpxQJSGlFKUaBVNCAFoFkdAqF0W3z+WGHV9lChoBmgJaA9DCJ6ymq6n6XFAlIaUUpRoFU0pAWgWR0CoXT74BV+7dX2UKGgGaAloD0MIiljEsAPPckCUhpRSlGgVTVsBaBZHQKhdhpD/lyR1fZQoaAZoCWgPQwhCWmPQyfNyQJSGlFKUaBVNjgFoFkdAqF2pyMkyDnV9lChoBmgJaA9DCFsJ3SVxxnFAlIaUUpRoFU0VAWgWR0CoXgsWGh24dX2UKGgGaAloD0MIiUD1D6JHcUCUhpRSlGgVTU4BaBZHQKheIlAu7H11fZQoaAZoCWgPQwhse7slOaRDQJSGlFKUaBVL6mgWR0CoXit52QnydX2UKGgGaAloD0MIzoqoib4NcUCUhpRSlGgVTUgBaBZHQKhfLl18stl1fZQoaAZoCWgPQwgaMEj6tNNxQJSGlFKUaBVNRgFoFkdAqF8tW8yvcXV9lChoBmgJaA9DCKDBps4jPnBAlIaUUpRoFU1VAWgWR0CoX1KqXF98dX2UKGgGaAloD0MIEwoRcMiKcUCUhpRSlGgVTXkBaBZHQKhfyiKR+0B1fZQoaAZoCWgPQwil+PiE7AdtQJSGlFKUaBVNEwFoFkdAqGAxMQEpzHV9lChoBmgJaA9DCCdQxCKG129AlIaUUpRoFU0vAWgWR0CoYNgiu+yrdX2UKGgGaAloD0MImrM+5RhmcUCUhpRSlGgVTTABaBZHQKhg/Q7cO9Z1fZQoaAZoCWgPQwiPcjCbgA5zQJSGlFKUaBVNFwFoFkdAqGFHfO2RaHV9lChoBmgJaA9DCJaWkXrPfW9AlIaUUpRoFU0JAWgWR0CoYduXu3MIdX2UKGgGaAloD0MIavmBq7y1cUCUhpRSlGgVTQ4BaBZHQKhjIFs54np1fZQoaAZoCWgPQwhFDhE35/NwQJSGlFKUaBVNKQFoFkdAqGMqncclxHV9lChoBmgJaA9DCILIIk084m9AlIaUUpRoFU0tAWgWR0CoY2jVH4GmdX2UKGgGaAloD0MIlZuopTlUa0CUhpRSlGgVTS4BaBZHQKhjseIVM251fZQoaAZoCWgPQwhQb0bNV4VuQJSGlFKUaBVNEwFoFkdAqGPCnivPknV9lChoBmgJaA9DCLyTT4/t2XFAlIaUUpRoFU05AWgWR0CoZG1BMSK4dX2UKGgGaAloD0MIPIidKTQ3cECUhpRSlGgVTTgBaBZHQKhkfzmOlwd1fZQoaAZoCWgPQwiRuTKodltwQJSGlFKUaBVNJQFoFkdAqGVUIeHSGHV9lChoBmgJaA9DCNwSueCMqnBAlIaUUpRoFU01AWgWR0CoZYGG/N7jdX2UKGgGaAloD0MISl0yjlH0cUCUhpRSlGgVTR0BaBZHQKhltBciW3V1fZQoaAZoCWgPQwjBkNWtHk5tQJSGlFKUaBVNSAFoFkdAqGXicf/3nXV9lChoBmgJaA9DCAGiYMbUVXFAlIaUUpRoFU0lAWgWR0CoZkFNlAeJdX2UKGgGaAloD0MIUyCzs+i8ckCUhpRSlGgVTQYBaBZHQKhmb31SOzZ1fZQoaAZoCWgPQwhVouwt5dFuQJSGlFKUaBVNTgFoFkdAqGfD/MnqmnV9lChoBmgJaA9DCLVTc7lBInFAlIaUUpRoFU1AAWgWR0CoZ/RXnyNGdX2UKGgGaAloD0MI0clS6z1KcUCUhpRSlGgVTSUBaBZHQKhn/GLk0aZ1fZQoaAZoCWgPQwgk8Ieff6BwQJSGlFKUaBVNJQFoFkdAqGmA11nuiXV9lChoBmgJaA9DCOBNt+yQkG9AlIaUUpRoFU02AWgWR0CoaaaHbh3rdX2UKGgGaAloD0MIWMoyxLEeSUCUhpRSlGgVS9JoFkdAqGmyJl8PWnV9lChoBmgJaA9DCCKrWz2nl3BAlIaUUpRoFUv+aBZHQKhpuUD+zdF1fZQoaAZoCWgPQwhd+MH51N1wQJSGlFKUaBVNLAFoFkdAqGoCgZjx1HV9lChoBmgJaA9DCDUk7rG0hnBAlIaUUpRoFU06AWgWR0CoajqlP8AJdX2UKGgGaAloD0MIogkUsQjsb0CUhpRSlGgVTTYBaBZHQKhq8Ucn3L51fZQoaAZoCWgPQwgR/G8l++xwQJSGlFKUaBVNCwFoFkdAqGtuqgh8pnV9lChoBmgJaA9DCLubpzokYHFAlIaUUpRoFU0nAWgWR0Coa5xVyWAxdX2UKGgGaAloD0MIO1J955fjckCUhpRSlGgVTRUBaBZHQKhsCvllsgx1fZQoaAZoCWgPQwhmguFcA4RwQJSGlFKUaBVNWgFoFkdAqGztLteD4HV9lChoBmgJaA9DCCWS6GUUf3BAlIaUUpRoFU1aAWgWR0CofZslb/wRdX2UKGgGaAloD0MIZktWRfgTcUCUhpRSlGgVTUABaBZHQKh+jKGtZFJ1fZQoaAZoCWgPQwiXqN4aWN1wQJSGlFKUaBVNYAFoFkdAqH+xlFtsN3V9lChoBmgJaA9DCJ6WH7hKTW1AlIaUUpRoFU0aAWgWR0Cof9tyo4uLdX2UKGgGaAloD0MIyXGndHBKcECUhpRSlGgVTR0BaBZHQKh//lxOtXB1fZQoaAZoCWgPQwj/sRAdAolwQJSGlFKUaBVNbAFoFkdAqH/+9Jz1b3V9lChoBmgJaA9DCN4CCYofUmxAlIaUUpRoFU0nAWgWR0CogAxO1v2odX2UKGgGaAloD0MIXD6Skt57ckCUhpRSlGgVTS8BaBZHQKiAaz+FUQ11fZQoaAZoCWgPQwivCP63kkpvQJSGlFKUaBVNGgFoFkdAqIG9ZxJd0XV9lChoBmgJaA9DCN46/3YZ53BAlIaUUpRoFU07AWgWR0CogfF0PpY+dX2UKGgGaAloD0MIUMJM2z8gbkCUhpRSlGgVTWMBaBZHQKiCD+YMOPN1fZQoaAZoCWgPQwga/Wg45W5yQJSGlFKUaBVNFQFoFkdAqIJEpy6tknV9lChoBmgJaA9DCHGS5o+pFHBAlIaUUpRoFU0wAWgWR0CoglyIgvDhdX2UKGgGaAloD0MIGTc10HzkbkCUhpRSlGgVTUcBaBZHQKiEC+C9RJp1fZQoaAZoCWgPQwhhGRu62aNMQJSGlFKUaBVL2mgWR0CohI/gBLf2dX2UKGgGaAloD0MIBp57D5ccQUCUhpRSlGgVS/xoFkdAqIVUCPp6hXV9lChoBmgJaA9DCNNmnIZoQHFAlIaUUpRoFU1bAWgWR0CohWh2fTTfdX2UKGgGaAloD0MIr8+c9akTbUCUhpRSlGgVTTwBaBZHQKiFlQVsUIt1fZQoaAZoCWgPQwhSYWwhyMRrQJSGlFKUaBVNEwFoFkdAqIY5A8jiXXV9lChoBmgJaA9DCKNZ2T5kCHBAlIaUUpRoFU0oAWgWR0CohkJ/XoTxdX2UKGgGaAloD0MIgGCOHr84cUCUhpRSlGgVTUABaBZHQKiGi0NSZSh1fZQoaAZoCWgPQwgj2SPUTCBxQJSGlFKUaBVNFgFoFkdAqIeVWMju8nV9lChoBmgJaA9DCOI/3UCBbHJAlIaUUpRoFU1zAWgWR0Coh7mdiDujdX2UKGgGaAloD0MIIywq4nTAb0CUhpRSlGgVTQ8BaBZHQKiHwJ53Tux1fZQoaAZoCWgPQwh0eXO4FodxQJSGlFKUaBVNJwFoFkdAqIgVrj5sTHV9lChoBmgJaA9DCLmq7LsiIG9AlIaUUpRoFU0ZAWgWR0CoiDdY4hlldX2UKGgGaAloD0MI42w6AjiSY0CUhpRSlGgVTegDaBZHQKiIXHxSYPZ1fZQoaAZoCWgPQwjylxb1SaFwQJSGlFKUaBVNKwFoFkdAqIhwZMtbtHV9lChoBmgJaA9DCNCzWfU5xWlAlIaUUpRoFU3EAmgWR0CoiPitJWeZdX2UKGgGaAloD0MIgxjo2hcwUkCUhpRSlGgVS9FoFkdAqIl2s3hn8XV9lChoBmgJaA9DCLDiVGvhOnJAlIaUUpRoFU0/AWgWR0Coindic5KfdX2UKGgGaAloD0MIMUW5ND6ycECUhpRSlGgVTTgBaBZHQKiK1jH4oJB1fZQoaAZoCWgPQwh40VeQZp1vQJSGlFKUaBVNEgFoFkdAqIr0aQ3gk3V9lChoBmgJaA9DCAtET8ok8m9AlIaUUpRoFU00AWgWR0Coi3eGoJiRdX2UKGgGaAloD0MIwqT4+MSMcUCUhpRSlGgVTRoBaBZHQKiL0ZwXIlt1fZQoaAZoCWgPQwi2SrA4HL5tQJSGlFKUaBVNGwFoFkdAqIwoWznienV9lChoBmgJaA9DCAtCeR8HI3FAlIaUUpRoFU0pAWgWR0CojCwOvt+kdX2UKGgGaAloD0MIQl96+3O2UkCUhpRSlGgVS9loFkdAqIyqTY/Vy3V9lChoBmgJaA9DCK32sBcK73BAlIaUUpRoFU0qAWgWR0CojYCG34KydX2UKGgGaAloD0MIMxr5vGKjb0CUhpRSlGgVTRQBaBZHQKiNl+YMOPN1fZQoaAZoCWgPQwjulXmr7o9wQJSGlFKUaBVNNAFoFkdAqI3azLOiWXV9lChoBmgJaA9DCCMw1jew2m1AlIaUUpRoFU0eAWgWR0Coje07CBPLdX2UKGgGaAloD0MI1vz4S4vBckCUhpRSlGgVTSUBaBZHQKiORzz3AVR1fZQoaAZoCWgPQwj9gt2w7bNvQJSGlFKUaBVNTwFoFkdAqI5QudwvQHV9lChoBmgJaA9DCJQu/UvSUHJAlIaUUpRoFU0tAWgWR0CojwYsmOU/dX2UKGgGaAloD0MIxeOiWgTHcECUhpRSlGgVTTkBaBZHQKiP0jopx3p1fZQoaAZoCWgPQwhhMlUwKm5sQJSGlFKUaBVNHgFoFkdAqJBQYP5HmXV9lChoBmgJaA9DCGaEtweh9G9AlIaUUpRoFU0YAWgWR0CokKwqy4WldX2UKGgGaAloD0MIKIBiZAk3cECUhpRSlGgVTQoBaBZHQKiQ2MbWEsd1fZQoaAZoCWgPQwgb2CrB4jJNQJSGlFKUaBVL+GgWR0CokSRvegtfdX2UKGgGaAloD0MIqRWm77XFcUCUhpRSlGgVTQYBaBZHQKiRcpvP1L91fZQoaAZoCWgPQwilZg+0gnZvQJSGlFKUaBVNIAFoFkdAqJGm96C17nVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6ae295e62477fb9d01b55d814377b901813823eb0cc549709444412b899a4d9
3
+ size 84829
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:239cce98cfa4b3b684b0635bc1a7e92851492dcbfd9afb250515d1fbe93adf7c
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f47b5d613e6dd5178d18c659b8ab3dd1b2c16f0bcf74ba308b0a63fff67b8c38
3
+ size 216909
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 242.2596052679843, "std_reward": 13.342361939206395, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T20:35:28.388183"}