File size: 2,845 Bytes
993656f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
689175d
993656f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
689175d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
993656f
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
license: mit
library_name: peft
tags:
- generated_from_trainer
base_model: microsoft/Phi-3-mini-128k-instruct
model-index:
- name: working
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# working

This model is a fine-tuned version of [microsoft/Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6374

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 24
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.6546        | 0.92  | 6    | 1.7189          |
| 1.2076        | 2.0   | 13   | 0.8973          |
| 0.7157        | 2.92  | 19   | 0.5511          |
| 0.4138        | 4.0   | 26   | 0.4499          |
| 0.4018        | 4.92  | 32   | 0.4044          |
| 0.3034        | 6.0   | 39   | 0.3793          |
| 0.3186        | 6.92  | 45   | 0.3645          |
| 0.2451        | 8.0   | 52   | 0.3590          |
| 0.2556        | 8.92  | 58   | 0.3660          |
| 0.1937        | 10.0  | 65   | 0.3825          |
| 0.1993        | 10.92 | 71   | 0.3782          |
| 0.1511        | 12.0  | 78   | 0.4275          |
| 0.1487        | 12.92 | 84   | 0.4234          |
| 0.1098        | 14.0  | 91   | 0.4876          |
| 0.1121        | 14.92 | 97   | 0.4675          |
| 0.0846        | 16.0  | 104  | 0.5187          |
| 0.0869        | 16.92 | 110  | 0.5365          |
| 0.0677        | 18.0  | 117  | 0.5372          |
| 0.0729        | 18.92 | 123  | 0.5639          |
| 0.0587        | 20.0  | 130  | 0.5773          |
| 0.0623        | 20.92 | 136  | 0.6006          |
| 0.0524        | 22.0  | 143  | 0.6098          |
| 0.0599        | 22.92 | 149  | 0.6101          |
| 0.0495        | 24.0  | 156  | 0.6204          |
| 0.0571        | 24.92 | 162  | 0.6297          |
| 0.0475        | 26.0  | 169  | 0.6353          |
| 0.0551        | 26.92 | 175  | 0.6374          |
| 0.0455        | 27.69 | 180  | 0.6374          |


### Framework versions

- PEFT 0.10.0
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2