File size: 1,623 Bytes
12b8143
 
2fd0002
12b8143
 
 
5d857fa
12b8143
 
 
 
 
5d857fa
12b8143
 
 
 
 
 
5d857fa
12b8143
07b66da
12b8143
5d857fa
12b8143
 
 
 
 
 
 
 
 
 
 
8bd239e
12b8143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d857fa
 
 
12b8143
 
 
 
 
5d857fa
12b8143
5d857fa
12b8143
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
language:
- vi
license: apache-2.0
library_name: peft
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
base_model: openai/whisper-large-v2
model-index:
- name: whisper_vietnam_nam
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper_vietnam_nam

This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the mozilla-foundation/common_voice_11_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3897

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

WER = 0,21789669

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.2417        | 1.0   | 347  | 0.4081          |
| 0.1389        | 2.0   | 694  | 0.3732          |
| 0.0611        | 3.0   | 1041 | 0.3897          |


### Framework versions

- PEFT 0.8.2
- Transformers 4.39.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2