# 파일들을 Hub로 푸시하기 [[open-in-colab]] 🤗 Diffusers는 모델, 스케줄러 또는 파이프라인을 Hub에 업로드할 수 있는 [`~diffusers.utils.PushToHubMixin`]을 제공합니다. 이는 Hub에 당신의 파일을 저장하는 쉬운 방법이며, 다른 사람들과 작업을 공유할 수도 있습니다. 실제적으로 [`~diffusers.utils.PushToHubMixin`]가 동작하는 방식은 다음과 같습니다: 1. Hub에 리포지토리를 생성합니다. 2. 나중에 다시 불러올 수 있도록 모델, 스케줄러 또는 파이프라인 파일을 저장합니다. 3. 이러한 파일이 포함된 폴더를 Hub에 업로드합니다. 이 가이드는 [`~diffusers.utils.PushToHubMixin`]을 사용하여 Hub에 파일을 업로드하는 방법을 보여줍니다. 먼저 액세스 [토큰](https://huggingface.co/settings/tokens)으로 Hub 계정에 로그인해야 합니다: ```py from huggingface_hub import notebook_login notebook_login() ``` ## 모델 모델을 허브에 푸시하려면 [`~diffusers.utils.PushToHubMixin.push_to_hub`]를 호출하고 Hub에 저장할 모델의 리포지토리 id를 지정합니다: ```py from diffusers import ControlNetModel controlnet = ControlNetModel( block_out_channels=(32, 64), layers_per_block=2, in_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), cross_attention_dim=32, conditioning_embedding_out_channels=(16, 32), ) controlnet.push_to_hub("my-controlnet-model") ``` 모델의 경우 Hub에 푸시할 가중치의 [*변형*](loading#checkpoint-variants)을 지정할 수도 있습니다. 예를 들어, `fp16` 가중치를 푸시하려면 다음과 같이 하세요: ```py controlnet.push_to_hub("my-controlnet-model", variant="fp16") ``` [`~diffusers.utils.PushToHubMixin.push_to_hub`] 함수는 모델의 `config.json` 파일을 저장하고 가중치는 `safetensors` 형식으로 자동으로 저장됩니다. 이제 Hub의 리포지토리에서 모델을 다시 불러올 수 있습니다: ```py model = ControlNetModel.from_pretrained("your-namespace/my-controlnet-model") ``` ## 스케줄러 스케줄러를 허브에 푸시하려면 [`~diffusers.utils.PushToHubMixin.push_to_hub`]를 호출하고 Hub에 저장할 스케줄러의 리포지토리 id를 지정합니다: ```py from diffusers import DDIMScheduler scheduler = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, ) scheduler.push_to_hub("my-controlnet-scheduler") ``` [`~diffusers.utils.PushToHubMixin.push_to_hub`] 함수는 스케줄러의 `scheduler_config.json` 파일을 지정된 리포지토리에 저장합니다. 이제 허브의 리포지토리에서 스케줄러를 다시 불러올 수 있습니다: ```py scheduler = DDIMScheduler.from_pretrained("your-namepsace/my-controlnet-scheduler") ``` ## 파이프라인 모든 컴포넌트가 포함된 전체 파이프라인을 Hub로 푸시할 수도 있습니다. 예를 들어, 원하는 파라미터로 [`StableDiffusionPipeline`]의 컴포넌트들을 초기화합니다: ```py from diffusers import ( UNet2DConditionModel, AutoencoderKL, DDIMScheduler, StableDiffusionPipeline, ) from transformers import CLIPTextModel, CLIPTextConfig, CLIPTokenizer unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, ) scheduler = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, ) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") ``` 모든 컴포넌트들을 [`StableDiffusionPipeline`]에 전달하고 [`~diffusers.utils.PushToHubMixin.push_to_hub`]를 호출하여 파이프라인을 Hub로 푸시합니다: ```py components = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } pipeline = StableDiffusionPipeline(**components) pipeline.push_to_hub("my-pipeline") ``` [`~diffusers.utils.PushToHubMixin.push_to_hub`] 함수는 각 컴포넌트를 리포지토리의 하위 폴더에 저장합니다. 이제 Hub의 리포지토리에서 파이프라인을 다시 불러올 수 있습니다: ```py pipeline = StableDiffusionPipeline.from_pretrained("your-namespace/my-pipeline") ``` ## 비공개 모델, 스케줄러 또는 파이프라인 파일들을 비공개로 두려면 [`~diffusers.utils.PushToHubMixin.push_to_hub`] 함수에서 `private=True`를 설정하세요: ```py controlnet.push_to_hub("my-controlnet-model-private", private=True) ``` 비공개 리포지토리는 본인만 볼 수 있으며 다른 사용자는 리포지토리를 복제할 수 없고 리포지토리가 검색 결과에 표시되지 않습니다. 사용자가 비공개 리포지토리의 URL을 가지고 있더라도 `404 - Sorry, we can't find the page you are looking for`라는 메시지가 표시됩니다. 비공개 리포지토리에서 모델을 로드하려면 [로그인](https://huggingface.co/docs/huggingface_hub/quick-start#login) 상태여야 합니다.