|
import inspect |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
FlowMatchEulerDiscreteScheduler, |
|
SD3Transformer2DModel, |
|
StableDiffusion3PAGPipeline, |
|
StableDiffusion3Pipeline, |
|
) |
|
from diffusers.utils.testing_utils import ( |
|
torch_device, |
|
) |
|
|
|
from ..test_pipelines_common import ( |
|
PipelineTesterMixin, |
|
check_qkv_fusion_matches_attn_procs_length, |
|
check_qkv_fusion_processors_exist, |
|
) |
|
|
|
|
|
class StableDiffusion3PAGPipelineFastTests(unittest.TestCase, PipelineTesterMixin): |
|
pipeline_class = StableDiffusion3PAGPipeline |
|
params = frozenset( |
|
[ |
|
"prompt", |
|
"height", |
|
"width", |
|
"guidance_scale", |
|
"negative_prompt", |
|
"prompt_embeds", |
|
"negative_prompt_embeds", |
|
] |
|
) |
|
batch_params = frozenset(["prompt", "negative_prompt"]) |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
transformer = SD3Transformer2DModel( |
|
sample_size=32, |
|
patch_size=1, |
|
in_channels=4, |
|
num_layers=2, |
|
attention_head_dim=8, |
|
num_attention_heads=4, |
|
caption_projection_dim=32, |
|
joint_attention_dim=32, |
|
pooled_projection_dim=64, |
|
out_channels=4, |
|
) |
|
clip_text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
hidden_act="gelu", |
|
projection_dim=32, |
|
) |
|
|
|
torch.manual_seed(0) |
|
text_encoder = CLIPTextModelWithProjection(clip_text_encoder_config) |
|
|
|
torch.manual_seed(0) |
|
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config) |
|
|
|
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") |
|
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
tokenizer_3 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") |
|
|
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
sample_size=32, |
|
in_channels=3, |
|
out_channels=3, |
|
block_out_channels=(4,), |
|
layers_per_block=1, |
|
latent_channels=4, |
|
norm_num_groups=1, |
|
use_quant_conv=False, |
|
use_post_quant_conv=False, |
|
shift_factor=0.0609, |
|
scaling_factor=1.5035, |
|
) |
|
|
|
scheduler = FlowMatchEulerDiscreteScheduler() |
|
|
|
return { |
|
"scheduler": scheduler, |
|
"text_encoder": text_encoder, |
|
"text_encoder_2": text_encoder_2, |
|
"text_encoder_3": text_encoder_3, |
|
"tokenizer": tokenizer, |
|
"tokenizer_2": tokenizer_2, |
|
"tokenizer_3": tokenizer_3, |
|
"transformer": transformer, |
|
"vae": vae, |
|
} |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device="cpu").manual_seed(seed) |
|
|
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 5.0, |
|
"output_type": "np", |
|
"pag_scale": 0.0, |
|
} |
|
return inputs |
|
|
|
def test_stable_diffusion_3_different_prompts(self): |
|
pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
output_same_prompt = pipe(**inputs).images[0] |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["prompt_2"] = "a different prompt" |
|
inputs["prompt_3"] = "another different prompt" |
|
output_different_prompts = pipe(**inputs).images[0] |
|
|
|
max_diff = np.abs(output_same_prompt - output_different_prompts).max() |
|
|
|
|
|
assert max_diff > 1e-2 |
|
|
|
def test_stable_diffusion_3_different_negative_prompts(self): |
|
pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
output_same_prompt = pipe(**inputs).images[0] |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["negative_prompt_2"] = "deformed" |
|
inputs["negative_prompt_3"] = "blurry" |
|
output_different_prompts = pipe(**inputs).images[0] |
|
|
|
max_diff = np.abs(output_same_prompt - output_different_prompts).max() |
|
|
|
|
|
assert max_diff > 1e-2 |
|
|
|
def test_stable_diffusion_3_prompt_embeds(self): |
|
pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) |
|
inputs = self.get_dummy_inputs(torch_device) |
|
|
|
output_with_prompt = pipe(**inputs).images[0] |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
prompt = inputs.pop("prompt") |
|
|
|
do_classifier_free_guidance = inputs["guidance_scale"] > 1 |
|
( |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
) = pipe.encode_prompt( |
|
prompt, |
|
prompt_2=None, |
|
prompt_3=None, |
|
do_classifier_free_guidance=do_classifier_free_guidance, |
|
device=torch_device, |
|
) |
|
output_with_embeds = pipe( |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
**inputs, |
|
).images[0] |
|
|
|
max_diff = np.abs(output_with_prompt - output_with_embeds).max() |
|
assert max_diff < 1e-4 |
|
|
|
def test_fused_qkv_projections(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = pipe(**inputs).images |
|
original_image_slice = image[0, -3:, -3:, -1] |
|
|
|
|
|
|
|
pipe.transformer.fuse_qkv_projections() |
|
assert check_qkv_fusion_processors_exist( |
|
pipe.transformer |
|
), "Something wrong with the fused attention processors. Expected all the attention processors to be fused." |
|
assert check_qkv_fusion_matches_attn_procs_length( |
|
pipe.transformer, pipe.transformer.original_attn_processors |
|
), "Something wrong with the attention processors concerning the fused QKV projections." |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = pipe(**inputs).images |
|
image_slice_fused = image[0, -3:, -3:, -1] |
|
|
|
pipe.transformer.unfuse_qkv_projections() |
|
inputs = self.get_dummy_inputs(device) |
|
image = pipe(**inputs).images |
|
image_slice_disabled = image[0, -3:, -3:, -1] |
|
|
|
assert np.allclose( |
|
original_image_slice, image_slice_fused, atol=1e-3, rtol=1e-3 |
|
), "Fusion of QKV projections shouldn't affect the outputs." |
|
assert np.allclose( |
|
image_slice_fused, image_slice_disabled, atol=1e-3, rtol=1e-3 |
|
), "Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled." |
|
assert np.allclose( |
|
original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2 |
|
), "Original outputs should match when fused QKV projections are disabled." |
|
|
|
def test_pag_disable_enable(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
|
|
|
|
pipe_sd = StableDiffusion3Pipeline(**components) |
|
pipe_sd = pipe_sd.to(device) |
|
pipe_sd.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
del inputs["pag_scale"] |
|
assert ( |
|
"pag_scale" not in inspect.signature(pipe_sd.__call__).parameters |
|
), f"`pag_scale` should not be a call parameter of the base pipeline {pipe_sd.__class__.__name__}." |
|
out = pipe_sd(**inputs).images[0, -3:, -3:, -1] |
|
|
|
components = self.get_dummy_components() |
|
|
|
|
|
pipe_pag = self.pipeline_class(**components) |
|
pipe_pag = pipe_pag.to(device) |
|
pipe_pag.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
inputs["pag_scale"] = 0.0 |
|
out_pag_disabled = pipe_pag(**inputs).images[0, -3:, -3:, -1] |
|
|
|
assert np.abs(out.flatten() - out_pag_disabled.flatten()).max() < 1e-3 |
|
|
|
def test_pag_applied_layers(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
|
|
|
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
all_self_attn_layers = [k for k in pipe.transformer.attn_processors.keys() if "attn" in k] |
|
original_attn_procs = pipe.transformer.attn_processors |
|
pag_layers = ["blocks.0", "blocks.1"] |
|
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) |
|
assert set(pipe.pag_attn_processors) == set(all_self_attn_layers) |
|
|
|
|
|
block_0_self_attn = ["transformer_blocks.0.attn.processor"] |
|
pipe.transformer.set_attn_processor(original_attn_procs.copy()) |
|
pag_layers = ["blocks.0"] |
|
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) |
|
assert set(pipe.pag_attn_processors) == set(block_0_self_attn) |
|
|
|
pipe.transformer.set_attn_processor(original_attn_procs.copy()) |
|
pag_layers = ["blocks.0.attn"] |
|
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) |
|
assert set(pipe.pag_attn_processors) == set(block_0_self_attn) |
|
|
|
pipe.transformer.set_attn_processor(original_attn_procs.copy()) |
|
pag_layers = ["blocks.(0|1)"] |
|
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) |
|
assert (len(pipe.pag_attn_processors)) == 2 |
|
|
|
pipe.transformer.set_attn_processor(original_attn_procs.copy()) |
|
pag_layers = ["blocks.0", r"blocks\.1"] |
|
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) |
|
assert len(pipe.pag_attn_processors) == 2 |
|
|