|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
import tempfile |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import AutoTokenizer, T5EncoderModel |
|
|
|
import diffusers |
|
from diffusers import ( |
|
AutoencoderKL, |
|
DDIMScheduler, |
|
PixArtSigmaPAGPipeline, |
|
PixArtSigmaPipeline, |
|
PixArtTransformer2DModel, |
|
) |
|
from diffusers.utils import logging |
|
from diffusers.utils.testing_utils import ( |
|
CaptureLogger, |
|
enable_full_determinism, |
|
print_tensor_test, |
|
torch_device, |
|
) |
|
|
|
from ..pipeline_params import ( |
|
TEXT_TO_IMAGE_BATCH_PARAMS, |
|
TEXT_TO_IMAGE_IMAGE_PARAMS, |
|
TEXT_TO_IMAGE_PARAMS, |
|
) |
|
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference, to_np |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class PixArtSigmaPAGPipelineFastTests(PipelineTesterMixin, unittest.TestCase): |
|
pipeline_class = PixArtSigmaPAGPipeline |
|
params = TEXT_TO_IMAGE_PARAMS.union({"pag_scale", "pag_adaptive_scale"}) |
|
params = set(params) |
|
params.remove("cross_attention_kwargs") |
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS |
|
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS |
|
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS |
|
required_optional_params = PipelineTesterMixin.required_optional_params |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
transformer = PixArtTransformer2DModel( |
|
sample_size=8, |
|
num_layers=2, |
|
patch_size=2, |
|
attention_head_dim=8, |
|
num_attention_heads=3, |
|
caption_channels=32, |
|
in_channels=4, |
|
cross_attention_dim=24, |
|
out_channels=8, |
|
attention_bias=True, |
|
activation_fn="gelu-approximate", |
|
num_embeds_ada_norm=1000, |
|
norm_type="ada_norm_single", |
|
norm_elementwise_affine=False, |
|
norm_eps=1e-6, |
|
) |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL() |
|
|
|
scheduler = DDIMScheduler() |
|
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") |
|
|
|
components = { |
|
"transformer": transformer.eval(), |
|
"vae": vae.eval(), |
|
"scheduler": scheduler, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 1.0, |
|
"pag_scale": 3.0, |
|
"use_resolution_binning": False, |
|
"output_type": "np", |
|
} |
|
return inputs |
|
|
|
def test_pag_disable_enable(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
|
|
|
|
pipe = PixArtSigmaPipeline(**components) |
|
pipe = pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
del inputs["pag_scale"] |
|
assert ( |
|
"pag_scale" not in inspect.signature(pipe.__call__).parameters |
|
), f"`pag_scale` should not be a call parameter of the base pipeline {pipe.__class__.__name__}." |
|
out = pipe(**inputs).images[0, -3:, -3:, -1] |
|
|
|
|
|
components["pag_applied_layers"] = ["blocks.1"] |
|
pipe_pag = self.pipeline_class(**components) |
|
pipe_pag = pipe_pag.to(device) |
|
pipe_pag.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
inputs["pag_scale"] = 0.0 |
|
out_pag_disabled = pipe_pag(**inputs).images[0, -3:, -3:, -1] |
|
|
|
|
|
pipe_pag = self.pipeline_class(**components) |
|
pipe_pag = pipe_pag.to(device) |
|
pipe_pag.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
out_pag_enabled = pipe_pag(**inputs).images[0, -3:, -3:, -1] |
|
|
|
assert np.abs(out.flatten() - out_pag_disabled.flatten()).max() < 1e-3 |
|
assert np.abs(out.flatten() - out_pag_enabled.flatten()).max() > 1e-3 |
|
|
|
def test_pag_applied_layers(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
|
|
|
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
|
|
all_self_attn_layers = [k for k in pipe.transformer.attn_processors.keys() if "attn1" in k] |
|
pag_layers = ["blocks.0", "blocks.1"] |
|
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) |
|
assert set(pipe.pag_attn_processors) == set(all_self_attn_layers) |
|
|
|
def test_pag_inference(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
|
|
pipe_pag = self.pipeline_class(**components) |
|
pipe_pag = pipe_pag.to(device) |
|
pipe_pag.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = pipe_pag(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
print_tensor_test(image_slice) |
|
|
|
assert image.shape == ( |
|
1, |
|
8, |
|
8, |
|
3, |
|
), f"the shape of the output image should be (1, 8, 8, 3) but got {image.shape}" |
|
expected_slice = np.array([0.6499, 0.3250, 0.3572, 0.6780, 0.4453, 0.4582, 0.2770, 0.5168, 0.4594]) |
|
|
|
max_diff = np.abs(image_slice.flatten() - expected_slice).max() |
|
self.assertLessEqual(max_diff, 1e-3) |
|
|
|
|
|
def test_save_load_optional_components(self): |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
|
|
prompt = inputs["prompt"] |
|
generator = inputs["generator"] |
|
num_inference_steps = inputs["num_inference_steps"] |
|
output_type = inputs["output_type"] |
|
|
|
( |
|
prompt_embeds, |
|
prompt_attention_mask, |
|
negative_prompt_embeds, |
|
negative_prompt_attention_mask, |
|
) = pipe.encode_prompt(prompt) |
|
|
|
|
|
inputs = { |
|
"prompt_embeds": prompt_embeds, |
|
"prompt_attention_mask": prompt_attention_mask, |
|
"negative_prompt": None, |
|
"negative_prompt_embeds": negative_prompt_embeds, |
|
"negative_prompt_attention_mask": negative_prompt_attention_mask, |
|
"generator": generator, |
|
"num_inference_steps": num_inference_steps, |
|
"output_type": output_type, |
|
"use_resolution_binning": False, |
|
} |
|
|
|
|
|
for optional_component in pipe._optional_components: |
|
setattr(pipe, optional_component, None) |
|
|
|
output = pipe(**inputs)[0] |
|
|
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
pipe.save_pretrained(tmpdir) |
|
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir, pag_applied_layers=["blocks.1"]) |
|
pipe_loaded.to(torch_device) |
|
pipe_loaded.set_progress_bar_config(disable=None) |
|
|
|
for optional_component in pipe._optional_components: |
|
self.assertTrue( |
|
getattr(pipe_loaded, optional_component) is None, |
|
f"`{optional_component}` did not stay set to None after loading.", |
|
) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
|
|
generator = inputs["generator"] |
|
num_inference_steps = inputs["num_inference_steps"] |
|
output_type = inputs["output_type"] |
|
|
|
|
|
inputs = { |
|
"prompt_embeds": prompt_embeds, |
|
"prompt_attention_mask": prompt_attention_mask, |
|
"negative_prompt": None, |
|
"negative_prompt_embeds": negative_prompt_embeds, |
|
"negative_prompt_attention_mask": negative_prompt_attention_mask, |
|
"generator": generator, |
|
"num_inference_steps": num_inference_steps, |
|
"output_type": output_type, |
|
"use_resolution_binning": False, |
|
} |
|
|
|
output_loaded = pipe_loaded(**inputs)[0] |
|
|
|
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max() |
|
self.assertLess(max_diff, 1e-4) |
|
|
|
|
|
|
|
|
|
def test_save_load_local(self, expected_max_difference=1e-4): |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
|
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
output = pipe(**inputs)[0] |
|
|
|
logger = logging.get_logger("diffusers.pipelines.pipeline_utils") |
|
logger.setLevel(diffusers.logging.INFO) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
pipe.save_pretrained(tmpdir, safe_serialization=False) |
|
|
|
with CaptureLogger(logger) as cap_logger: |
|
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir, pag_applied_layers=["blocks.1"]) |
|
|
|
for name in pipe_loaded.components.keys(): |
|
if name not in pipe_loaded._optional_components: |
|
assert name in str(cap_logger) |
|
|
|
pipe_loaded.to(torch_device) |
|
pipe_loaded.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
output_loaded = pipe_loaded(**inputs)[0] |
|
|
|
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max() |
|
self.assertLess(max_diff, expected_max_difference) |
|
|
|
|
|
def test_attention_slicing_forward_pass( |
|
self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3 |
|
): |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
|
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator_device = "cpu" |
|
inputs = self.get_dummy_inputs(generator_device) |
|
output_without_slicing = pipe(**inputs)[0] |
|
|
|
pipe.enable_attention_slicing(slice_size=1) |
|
inputs = self.get_dummy_inputs(generator_device) |
|
output_with_slicing1 = pipe(**inputs)[0] |
|
|
|
pipe.enable_attention_slicing(slice_size=2) |
|
inputs = self.get_dummy_inputs(generator_device) |
|
output_with_slicing2 = pipe(**inputs)[0] |
|
|
|
if test_max_difference: |
|
max_diff1 = np.abs(to_np(output_with_slicing1) - to_np(output_without_slicing)).max() |
|
max_diff2 = np.abs(to_np(output_with_slicing2) - to_np(output_without_slicing)).max() |
|
self.assertLess( |
|
max(max_diff1, max_diff2), |
|
expected_max_diff, |
|
"Attention slicing should not affect the inference results", |
|
) |
|
|
|
if test_mean_pixel_difference: |
|
assert_mean_pixel_difference(to_np(output_with_slicing1[0]), to_np(output_without_slicing[0])) |
|
assert_mean_pixel_difference(to_np(output_with_slicing2[0]), to_np(output_without_slicing[0])) |
|
|
|
|
|
|
|
def test_dict_tuple_outputs_equivalent(self, expected_slice=None, expected_max_difference=1e-4): |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
|
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator_device = "cpu" |
|
if expected_slice is None: |
|
output = pipe(**self.get_dummy_inputs(generator_device))[0] |
|
else: |
|
output = expected_slice |
|
|
|
output_tuple = pipe(**self.get_dummy_inputs(generator_device), return_dict=False)[0] |
|
|
|
if expected_slice is None: |
|
max_diff = np.abs(to_np(output) - to_np(output_tuple)).max() |
|
else: |
|
if output_tuple.ndim != 5: |
|
max_diff = np.abs(to_np(output) - to_np(output_tuple)[0, -3:, -3:, -1].flatten()).max() |
|
else: |
|
max_diff = np.abs(to_np(output) - to_np(output_tuple)[0, -3:, -3:, -1, -1].flatten()).max() |
|
|
|
self.assertLess(max_diff, expected_max_difference) |
|
|
|
|
|
def test_inference_batch_single_identical( |
|
self, |
|
batch_size=2, |
|
expected_max_diff=1e-4, |
|
additional_params_copy_to_batched_inputs=["num_inference_steps"], |
|
): |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
|
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
inputs = self.get_dummy_inputs(torch_device) |
|
|
|
inputs["generator"] = self.get_generator(0) |
|
|
|
logger = logging.get_logger(pipe.__module__) |
|
logger.setLevel(level=diffusers.logging.FATAL) |
|
|
|
|
|
batched_inputs = {} |
|
batched_inputs.update(inputs) |
|
|
|
for name in self.batch_params: |
|
if name not in inputs: |
|
continue |
|
|
|
value = inputs[name] |
|
if name == "prompt": |
|
len_prompt = len(value) |
|
batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)] |
|
batched_inputs[name][-1] = 100 * "very long" |
|
|
|
else: |
|
batched_inputs[name] = batch_size * [value] |
|
|
|
if "generator" in inputs: |
|
batched_inputs["generator"] = [self.get_generator(i) for i in range(batch_size)] |
|
|
|
if "batch_size" in inputs: |
|
batched_inputs["batch_size"] = batch_size |
|
|
|
for arg in additional_params_copy_to_batched_inputs: |
|
batched_inputs[arg] = inputs[arg] |
|
|
|
output = pipe(**inputs) |
|
output_batch = pipe(**batched_inputs) |
|
|
|
assert output_batch[0].shape[0] == batch_size |
|
|
|
max_diff = np.abs(to_np(output_batch[0][0]) - to_np(output[0][0])).max() |
|
assert max_diff < expected_max_diff |
|
|
|
|
|
def test_components_function(self): |
|
init_components = self.get_dummy_components() |
|
init_components = {k: v for k, v in init_components.items() if not isinstance(v, (str, int, float, list))} |
|
|
|
pipe = self.pipeline_class(**init_components) |
|
|
|
self.assertTrue(hasattr(pipe, "components")) |
|
self.assertTrue(set(pipe.components.keys()) == set(init_components.keys())) |
|
|