working / diffusers /tests /pipelines /pag /test_pag_kolors.py
NadaGh's picture
End of training
dde5d93 verified
raw
history blame
10.3 kB
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import unittest
import numpy as np
import torch
from diffusers import (
AutoencoderKL,
EulerDiscreteScheduler,
KolorsPAGPipeline,
KolorsPipeline,
UNet2DConditionModel,
)
from diffusers.pipelines.kolors import ChatGLMModel, ChatGLMTokenizer
from diffusers.utils.testing_utils import enable_full_determinism
from ..pipeline_params import (
TEXT_TO_IMAGE_BATCH_PARAMS,
TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS,
TEXT_TO_IMAGE_IMAGE_PARAMS,
TEXT_TO_IMAGE_PARAMS,
)
from ..test_pipelines_common import (
PipelineFromPipeTesterMixin,
PipelineTesterMixin,
)
enable_full_determinism()
class KolorsPAGPipelineFastTests(
PipelineTesterMixin,
PipelineFromPipeTesterMixin,
unittest.TestCase,
):
pipeline_class = KolorsPAGPipeline
params = TEXT_TO_IMAGE_PARAMS.union({"pag_scale", "pag_adaptive_scale"})
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS.union({"add_text_embeds", "add_time_ids"})
# Copied from tests.pipelines.kolors.test_kolors.KolorsPipelineFastTests.get_dummy_components
def get_dummy_components(self, time_cond_proj_dim=None):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(2, 4),
layers_per_block=2,
time_cond_proj_dim=time_cond_proj_dim,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
# specific config below
attention_head_dim=(2, 4),
use_linear_projection=True,
addition_embed_type="text_time",
addition_time_embed_dim=8,
transformer_layers_per_block=(1, 2),
projection_class_embeddings_input_dim=56,
cross_attention_dim=8,
norm_num_groups=1,
)
scheduler = EulerDiscreteScheduler(
beta_start=0.00085,
beta_end=0.012,
steps_offset=1,
beta_schedule="scaled_linear",
timestep_spacing="leading",
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
sample_size=128,
)
torch.manual_seed(0)
text_encoder = ChatGLMModel.from_pretrained("hf-internal-testing/tiny-random-chatglm3-6b")
tokenizer = ChatGLMTokenizer.from_pretrained("hf-internal-testing/tiny-random-chatglm3-6b")
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"image_encoder": None,
"feature_extractor": None,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 5.0,
"pag_scale": 0.9,
"output_type": "np",
}
return inputs
def test_pag_disable_enable(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
# base pipeline (expect same output when pag is disabled)
pipe_sd = KolorsPipeline(**components)
pipe_sd = pipe_sd.to(device)
pipe_sd.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
del inputs["pag_scale"]
assert (
"pag_scale" not in inspect.signature(pipe_sd.__call__).parameters
), f"`pag_scale` should not be a call parameter of the base pipeline {pipe_sd.__class__.__name__}."
out = pipe_sd(**inputs).images[0, -3:, -3:, -1]
# pag disabled with pag_scale=0.0
pipe_pag = self.pipeline_class(**components)
pipe_pag = pipe_pag.to(device)
pipe_pag.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
inputs["pag_scale"] = 0.0
out_pag_disabled = pipe_pag(**inputs).images[0, -3:, -3:, -1]
# pag enabled
pipe_pag = self.pipeline_class(**components, pag_applied_layers=["mid", "up", "down"])
pipe_pag = pipe_pag.to(device)
pipe_pag.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
out_pag_enabled = pipe_pag(**inputs).images[0, -3:, -3:, -1]
assert np.abs(out.flatten() - out_pag_disabled.flatten()).max() < 1e-3
assert np.abs(out.flatten() - out_pag_enabled.flatten()).max() > 1e-3
def test_pag_applied_layers(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
# base pipeline
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
# pag_applied_layers = ["mid","up","down"] should apply to all self-attention layers
all_self_attn_layers = [k for k in pipe.unet.attn_processors.keys() if "attn1" in k]
original_attn_procs = pipe.unet.attn_processors
pag_layers = ["mid", "down", "up"]
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)
assert set(pipe.pag_attn_processors) == set(all_self_attn_layers)
all_self_attn_mid_layers = [
"mid_block.attentions.0.transformer_blocks.0.attn1.processor",
"mid_block.attentions.0.transformer_blocks.1.attn1.processor",
]
pipe.unet.set_attn_processor(original_attn_procs.copy())
pag_layers = ["mid"]
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)
assert set(pipe.pag_attn_processors) == set(all_self_attn_mid_layers)
pipe.unet.set_attn_processor(original_attn_procs.copy())
pag_layers = ["mid_block"]
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)
assert set(pipe.pag_attn_processors) == set(all_self_attn_mid_layers)
pipe.unet.set_attn_processor(original_attn_procs.copy())
pag_layers = ["mid_block.attentions.0"]
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)
assert set(pipe.pag_attn_processors) == set(all_self_attn_mid_layers)
# pag_applied_layers = ["mid.block_0.attentions_1"] does not exist in the model
pipe.unet.set_attn_processor(original_attn_procs.copy())
pag_layers = ["mid_block.attentions.1"]
with self.assertRaises(ValueError):
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)
# pag_applied_layers = "down" should apply to all self-attention layers in down_blocks
pipe.unet.set_attn_processor(original_attn_procs.copy())
pag_layers = ["down"]
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)
assert len(pipe.pag_attn_processors) == 4
pipe.unet.set_attn_processor(original_attn_procs.copy())
pag_layers = ["down_blocks.0"]
with self.assertRaises(ValueError):
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)
pipe.unet.set_attn_processor(original_attn_procs.copy())
pag_layers = ["down_blocks.1"]
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)
assert len(pipe.pag_attn_processors) == 4
pipe.unet.set_attn_processor(original_attn_procs.copy())
pag_layers = ["down_blocks.1.attentions.1"]
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)
assert len(pipe.pag_attn_processors) == 2
def test_pag_inference(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
pipe_pag = self.pipeline_class(**components, pag_applied_layers=["mid", "up", "down"])
pipe_pag = pipe_pag.to(device)
pipe_pag.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = pipe_pag(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (
1,
64,
64,
3,
), f"the shape of the output image should be (1, 64, 64, 3) but got {image.shape}"
expected_slice = np.array(
[0.26030684, 0.43192005, 0.4042826, 0.4189067, 0.5181305, 0.3832534, 0.472135, 0.4145031, 0.43726248]
)
max_diff = np.abs(image_slice.flatten() - expected_slice).max()
self.assertLessEqual(max_diff, 1e-3)
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(expected_max_diff=3e-3)