|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
EulerDiscreteScheduler, |
|
KolorsPAGPipeline, |
|
KolorsPipeline, |
|
UNet2DConditionModel, |
|
) |
|
from diffusers.pipelines.kolors import ChatGLMModel, ChatGLMTokenizer |
|
from diffusers.utils.testing_utils import enable_full_determinism |
|
|
|
from ..pipeline_params import ( |
|
TEXT_TO_IMAGE_BATCH_PARAMS, |
|
TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS, |
|
TEXT_TO_IMAGE_IMAGE_PARAMS, |
|
TEXT_TO_IMAGE_PARAMS, |
|
) |
|
from ..test_pipelines_common import ( |
|
PipelineFromPipeTesterMixin, |
|
PipelineTesterMixin, |
|
) |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class KolorsPAGPipelineFastTests( |
|
PipelineTesterMixin, |
|
PipelineFromPipeTesterMixin, |
|
unittest.TestCase, |
|
): |
|
pipeline_class = KolorsPAGPipeline |
|
params = TEXT_TO_IMAGE_PARAMS.union({"pag_scale", "pag_adaptive_scale"}) |
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS |
|
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS |
|
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS |
|
callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS.union({"add_text_embeds", "add_time_ids"}) |
|
|
|
|
|
def get_dummy_components(self, time_cond_proj_dim=None): |
|
torch.manual_seed(0) |
|
unet = UNet2DConditionModel( |
|
block_out_channels=(2, 4), |
|
layers_per_block=2, |
|
time_cond_proj_dim=time_cond_proj_dim, |
|
sample_size=32, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
|
|
attention_head_dim=(2, 4), |
|
use_linear_projection=True, |
|
addition_embed_type="text_time", |
|
addition_time_embed_dim=8, |
|
transformer_layers_per_block=(1, 2), |
|
projection_class_embeddings_input_dim=56, |
|
cross_attention_dim=8, |
|
norm_num_groups=1, |
|
) |
|
scheduler = EulerDiscreteScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
steps_offset=1, |
|
beta_schedule="scaled_linear", |
|
timestep_spacing="leading", |
|
) |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
sample_size=128, |
|
) |
|
torch.manual_seed(0) |
|
text_encoder = ChatGLMModel.from_pretrained("hf-internal-testing/tiny-random-chatglm3-6b") |
|
tokenizer = ChatGLMTokenizer.from_pretrained("hf-internal-testing/tiny-random-chatglm3-6b") |
|
|
|
components = { |
|
"unet": unet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"image_encoder": None, |
|
"feature_extractor": None, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 5.0, |
|
"pag_scale": 0.9, |
|
"output_type": "np", |
|
} |
|
return inputs |
|
|
|
def test_pag_disable_enable(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
|
|
|
|
pipe_sd = KolorsPipeline(**components) |
|
pipe_sd = pipe_sd.to(device) |
|
pipe_sd.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
del inputs["pag_scale"] |
|
assert ( |
|
"pag_scale" not in inspect.signature(pipe_sd.__call__).parameters |
|
), f"`pag_scale` should not be a call parameter of the base pipeline {pipe_sd.__class__.__name__}." |
|
out = pipe_sd(**inputs).images[0, -3:, -3:, -1] |
|
|
|
|
|
pipe_pag = self.pipeline_class(**components) |
|
pipe_pag = pipe_pag.to(device) |
|
pipe_pag.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
inputs["pag_scale"] = 0.0 |
|
out_pag_disabled = pipe_pag(**inputs).images[0, -3:, -3:, -1] |
|
|
|
|
|
pipe_pag = self.pipeline_class(**components, pag_applied_layers=["mid", "up", "down"]) |
|
pipe_pag = pipe_pag.to(device) |
|
pipe_pag.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
out_pag_enabled = pipe_pag(**inputs).images[0, -3:, -3:, -1] |
|
|
|
assert np.abs(out.flatten() - out_pag_disabled.flatten()).max() < 1e-3 |
|
assert np.abs(out.flatten() - out_pag_enabled.flatten()).max() > 1e-3 |
|
|
|
def test_pag_applied_layers(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
|
|
|
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
|
|
all_self_attn_layers = [k for k in pipe.unet.attn_processors.keys() if "attn1" in k] |
|
original_attn_procs = pipe.unet.attn_processors |
|
pag_layers = ["mid", "down", "up"] |
|
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) |
|
assert set(pipe.pag_attn_processors) == set(all_self_attn_layers) |
|
|
|
all_self_attn_mid_layers = [ |
|
"mid_block.attentions.0.transformer_blocks.0.attn1.processor", |
|
"mid_block.attentions.0.transformer_blocks.1.attn1.processor", |
|
] |
|
pipe.unet.set_attn_processor(original_attn_procs.copy()) |
|
pag_layers = ["mid"] |
|
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) |
|
assert set(pipe.pag_attn_processors) == set(all_self_attn_mid_layers) |
|
|
|
pipe.unet.set_attn_processor(original_attn_procs.copy()) |
|
pag_layers = ["mid_block"] |
|
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) |
|
assert set(pipe.pag_attn_processors) == set(all_self_attn_mid_layers) |
|
|
|
pipe.unet.set_attn_processor(original_attn_procs.copy()) |
|
pag_layers = ["mid_block.attentions.0"] |
|
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) |
|
assert set(pipe.pag_attn_processors) == set(all_self_attn_mid_layers) |
|
|
|
|
|
pipe.unet.set_attn_processor(original_attn_procs.copy()) |
|
pag_layers = ["mid_block.attentions.1"] |
|
with self.assertRaises(ValueError): |
|
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) |
|
|
|
|
|
pipe.unet.set_attn_processor(original_attn_procs.copy()) |
|
pag_layers = ["down"] |
|
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) |
|
assert len(pipe.pag_attn_processors) == 4 |
|
|
|
pipe.unet.set_attn_processor(original_attn_procs.copy()) |
|
pag_layers = ["down_blocks.0"] |
|
with self.assertRaises(ValueError): |
|
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) |
|
|
|
pipe.unet.set_attn_processor(original_attn_procs.copy()) |
|
pag_layers = ["down_blocks.1"] |
|
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) |
|
assert len(pipe.pag_attn_processors) == 4 |
|
|
|
pipe.unet.set_attn_processor(original_attn_procs.copy()) |
|
pag_layers = ["down_blocks.1.attentions.1"] |
|
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) |
|
assert len(pipe.pag_attn_processors) == 2 |
|
|
|
def test_pag_inference(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
|
|
pipe_pag = self.pipeline_class(**components, pag_applied_layers=["mid", "up", "down"]) |
|
pipe_pag = pipe_pag.to(device) |
|
pipe_pag.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = pipe_pag(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == ( |
|
1, |
|
64, |
|
64, |
|
3, |
|
), f"the shape of the output image should be (1, 64, 64, 3) but got {image.shape}" |
|
expected_slice = np.array( |
|
[0.26030684, 0.43192005, 0.4042826, 0.4189067, 0.5181305, 0.3832534, 0.472135, 0.4145031, 0.43726248] |
|
) |
|
|
|
max_diff = np.abs(image_slice.flatten() - expected_slice).max() |
|
self.assertLessEqual(max_diff, 1e-3) |
|
|
|
def test_inference_batch_single_identical(self): |
|
self._test_inference_batch_single_identical(expected_max_diff=3e-3) |
|
|