working / diffusers /tests /pipelines /pag /test_pag_controlnet_sd.py
NadaGh's picture
End of training
dde5d93 verified
raw
history blame
8.94 kB
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
ControlNetModel,
DDIMScheduler,
StableDiffusionControlNetPAGPipeline,
StableDiffusionControlNetPipeline,
UNet2DConditionModel,
)
from diffusers.utils.testing_utils import (
enable_full_determinism,
)
from diffusers.utils.torch_utils import randn_tensor
from ..pipeline_params import (
TEXT_TO_IMAGE_BATCH_PARAMS,
TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS,
TEXT_TO_IMAGE_IMAGE_PARAMS,
TEXT_TO_IMAGE_PARAMS,
)
from ..test_pipelines_common import (
IPAdapterTesterMixin,
PipelineFromPipeTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
)
enable_full_determinism()
class StableDiffusionControlNetPAGPipelineFastTests(
PipelineTesterMixin,
IPAdapterTesterMixin,
PipelineLatentTesterMixin,
PipelineFromPipeTesterMixin,
unittest.TestCase,
):
pipeline_class = StableDiffusionControlNetPAGPipeline
params = TEXT_TO_IMAGE_PARAMS.union({"pag_scale", "pag_adaptive_scale"})
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS.union({"add_text_embeds", "add_time_ids"})
def get_dummy_components(self, time_cond_proj_dim=None):
# Copied from tests.pipelines.controlnet.test_controlnet_sdxl.StableDiffusionXLControlNetPipelineFastTests.get_dummy_components
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(4, 8),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=8,
time_cond_proj_dim=time_cond_proj_dim,
norm_num_groups=2,
)
torch.manual_seed(0)
controlnet = ControlNetModel(
block_out_channels=(4, 8),
layers_per_block=2,
in_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
conditioning_embedding_out_channels=(2, 4),
cross_attention_dim=8,
norm_num_groups=2,
)
torch.manual_seed(0)
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[4, 8],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
norm_num_groups=2,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=8,
intermediate_size=16,
layer_norm_eps=1e-05,
num_attention_heads=2,
num_hidden_layers=2,
pad_token_id=1,
vocab_size=1000,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"unet": unet,
"controlnet": controlnet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
"image_encoder": None,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
controlnet_embedder_scale_factor = 2
image = randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
generator=generator,
device=torch.device(device),
)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"pag_scale": 3.0,
"output_type": "np",
"image": image,
}
return inputs
def test_pag_disable_enable(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
# base pipeline (expect same output when pag is disabled)
pipe_sd = StableDiffusionControlNetPipeline(**components)
pipe_sd = pipe_sd.to(device)
pipe_sd.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
del inputs["pag_scale"]
assert (
"pag_scale" not in inspect.signature(pipe_sd.__call__).parameters
), f"`pag_scale` should not be a call parameter of the base pipeline {pipe_sd.__class__.__name__}."
out = pipe_sd(**inputs).images[0, -3:, -3:, -1]
# pag disabled with pag_scale=0.0
pipe_pag = self.pipeline_class(**components)
pipe_pag = pipe_pag.to(device)
pipe_pag.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
inputs["pag_scale"] = 0.0
out_pag_disabled = pipe_pag(**inputs).images[0, -3:, -3:, -1]
# pag enabled
pipe_pag = self.pipeline_class(**components, pag_applied_layers=["mid", "up", "down"])
pipe_pag = pipe_pag.to(device)
pipe_pag.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
out_pag_enabled = pipe_pag(**inputs).images[0, -3:, -3:, -1]
assert np.abs(out.flatten() - out_pag_disabled.flatten()).max() < 1e-3
assert np.abs(out.flatten() - out_pag_enabled.flatten()).max() > 1e-3
def test_pag_cfg(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
pipe_pag = self.pipeline_class(**components, pag_applied_layers=["mid", "up", "down"])
pipe_pag = pipe_pag.to(device)
pipe_pag.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = pipe_pag(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (
1,
64,
64,
3,
), f"the shape of the output image should be (1, 64, 64, 3) but got {image.shape}"
expected_slice = np.array(
[0.45505235, 0.2785938, 0.16334778, 0.79689944, 0.53095645, 0.40135607, 0.7052706, 0.69065094, 0.41548574]
)
max_diff = np.abs(image_slice.flatten() - expected_slice).max()
assert max_diff < 1e-3, f"output is different from expected, {image_slice.flatten()}"
def test_pag_uncond(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
pipe_pag = self.pipeline_class(**components, pag_applied_layers=["mid", "up", "down"])
pipe_pag = pipe_pag.to(device)
pipe_pag.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
inputs["guidance_scale"] = 0.0
image = pipe_pag(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (
1,
64,
64,
3,
), f"the shape of the output image should be (1, 64, 64, 3) but got {image.shape}"
expected_slice = np.array(
[0.45127502, 0.2797252, 0.15970308, 0.7993157, 0.5414344, 0.40160775, 0.7114598, 0.69803864, 0.4217583]
)
max_diff = np.abs(image_slice.flatten() - expected_slice).max()
assert max_diff < 1e-3, f"output is different from expected, {image_slice.flatten()}"