|
import gc |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import AutoTokenizer, GemmaConfig, GemmaForCausalLM |
|
|
|
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, LuminaNextDiT2DModel, LuminaText2ImgPipeline |
|
from diffusers.utils.testing_utils import ( |
|
numpy_cosine_similarity_distance, |
|
require_torch_gpu, |
|
slow, |
|
torch_device, |
|
) |
|
|
|
from ..test_pipelines_common import PipelineTesterMixin |
|
|
|
|
|
class LuminaText2ImgPipelinePipelineFastTests(unittest.TestCase, PipelineTesterMixin): |
|
pipeline_class = LuminaText2ImgPipeline |
|
params = frozenset( |
|
[ |
|
"prompt", |
|
"height", |
|
"width", |
|
"guidance_scale", |
|
"negative_prompt", |
|
"prompt_embeds", |
|
"negative_prompt_embeds", |
|
] |
|
) |
|
batch_params = frozenset(["prompt", "negative_prompt"]) |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
transformer = LuminaNextDiT2DModel( |
|
sample_size=16, |
|
patch_size=2, |
|
in_channels=4, |
|
hidden_size=24, |
|
num_layers=2, |
|
num_attention_heads=3, |
|
num_kv_heads=1, |
|
multiple_of=16, |
|
ffn_dim_multiplier=None, |
|
norm_eps=1e-5, |
|
learn_sigma=True, |
|
qk_norm=True, |
|
cross_attention_dim=32, |
|
scaling_factor=1.0, |
|
) |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL() |
|
|
|
scheduler = FlowMatchEulerDiscreteScheduler() |
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/dummy-gemma") |
|
|
|
torch.manual_seed(0) |
|
config = GemmaConfig( |
|
head_dim=4, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
num_attention_heads=4, |
|
num_hidden_layers=2, |
|
num_key_value_heads=4, |
|
) |
|
text_encoder = GemmaForCausalLM(config) |
|
|
|
components = { |
|
"transformer": transformer.eval(), |
|
"vae": vae.eval(), |
|
"scheduler": scheduler, |
|
"text_encoder": text_encoder.eval(), |
|
"tokenizer": tokenizer, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device="cpu").manual_seed(seed) |
|
|
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 5.0, |
|
"output_type": "np", |
|
} |
|
return inputs |
|
|
|
def test_lumina_prompt_embeds(self): |
|
pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) |
|
inputs = self.get_dummy_inputs(torch_device) |
|
|
|
output_with_prompt = pipe(**inputs).images[0] |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
prompt = inputs.pop("prompt") |
|
|
|
do_classifier_free_guidance = inputs["guidance_scale"] > 1 |
|
( |
|
prompt_embeds, |
|
prompt_attention_mask, |
|
negative_prompt_embeds, |
|
negative_prompt_attention_mask, |
|
) = pipe.encode_prompt( |
|
prompt, |
|
do_classifier_free_guidance=do_classifier_free_guidance, |
|
device=torch_device, |
|
) |
|
output_with_embeds = pipe( |
|
prompt_embeds=prompt_embeds, |
|
prompt_attention_mask=prompt_attention_mask, |
|
**inputs, |
|
).images[0] |
|
|
|
max_diff = np.abs(output_with_prompt - output_with_embeds).max() |
|
assert max_diff < 1e-4 |
|
|
|
@unittest.skip("xformers attention processor does not exist for Lumina") |
|
def test_xformers_attention_forwardGenerator_pass(self): |
|
pass |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class LuminaText2ImgPipelineSlowTests(unittest.TestCase): |
|
pipeline_class = LuminaText2ImgPipeline |
|
repo_id = "Alpha-VLLM/Lumina-Next-SFT-diffusers" |
|
|
|
def setUp(self): |
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def get_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device="cpu").manual_seed(seed) |
|
|
|
return { |
|
"prompt": "A photo of a cat", |
|
"num_inference_steps": 2, |
|
"guidance_scale": 5.0, |
|
"output_type": "np", |
|
"generator": generator, |
|
} |
|
|
|
def test_lumina_inference(self): |
|
pipe = self.pipeline_class.from_pretrained(self.repo_id, torch_dtype=torch.bfloat16) |
|
pipe.enable_model_cpu_offload() |
|
|
|
inputs = self.get_inputs(torch_device) |
|
|
|
image = pipe(**inputs).images[0] |
|
image_slice = image[0, :10, :10] |
|
expected_slice = np.array( |
|
[ |
|
[0.17773438, 0.18554688, 0.22070312], |
|
[0.046875, 0.06640625, 0.10351562], |
|
[0.0, 0.0, 0.02148438], |
|
[0.0, 0.0, 0.0], |
|
[0.0, 0.0, 0.0], |
|
[0.0, 0.0, 0.0], |
|
[0.0, 0.0, 0.0], |
|
[0.0, 0.0, 0.0], |
|
[0.0, 0.0, 0.0], |
|
[0.0, 0.0, 0.0], |
|
], |
|
dtype=np.float32, |
|
) |
|
|
|
max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), image_slice.flatten()) |
|
|
|
assert max_diff < 1e-4 |
|
|