working / diffusers /tests /pipelines /lumina /test_lumina_nextdit.py
NadaGh's picture
End of training
dde5d93 verified
raw
history blame
5.53 kB
import gc
import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, GemmaConfig, GemmaForCausalLM
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, LuminaNextDiT2DModel, LuminaText2ImgPipeline
from diffusers.utils.testing_utils import (
numpy_cosine_similarity_distance,
require_torch_gpu,
slow,
torch_device,
)
from ..test_pipelines_common import PipelineTesterMixin
class LuminaText2ImgPipelinePipelineFastTests(unittest.TestCase, PipelineTesterMixin):
pipeline_class = LuminaText2ImgPipeline
params = frozenset(
[
"prompt",
"height",
"width",
"guidance_scale",
"negative_prompt",
"prompt_embeds",
"negative_prompt_embeds",
]
)
batch_params = frozenset(["prompt", "negative_prompt"])
def get_dummy_components(self):
torch.manual_seed(0)
transformer = LuminaNextDiT2DModel(
sample_size=16,
patch_size=2,
in_channels=4,
hidden_size=24,
num_layers=2,
num_attention_heads=3,
num_kv_heads=1,
multiple_of=16,
ffn_dim_multiplier=None,
norm_eps=1e-5,
learn_sigma=True,
qk_norm=True,
cross_attention_dim=32,
scaling_factor=1.0,
)
torch.manual_seed(0)
vae = AutoencoderKL()
scheduler = FlowMatchEulerDiscreteScheduler()
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/dummy-gemma")
torch.manual_seed(0)
config = GemmaConfig(
head_dim=4,
hidden_size=32,
intermediate_size=37,
num_attention_heads=4,
num_hidden_layers=2,
num_key_value_heads=4,
)
text_encoder = GemmaForCausalLM(config)
components = {
"transformer": transformer.eval(),
"vae": vae.eval(),
"scheduler": scheduler,
"text_encoder": text_encoder.eval(),
"tokenizer": tokenizer,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device="cpu").manual_seed(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 5.0,
"output_type": "np",
}
return inputs
def test_lumina_prompt_embeds(self):
pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device)
inputs = self.get_dummy_inputs(torch_device)
output_with_prompt = pipe(**inputs).images[0]
inputs = self.get_dummy_inputs(torch_device)
prompt = inputs.pop("prompt")
do_classifier_free_guidance = inputs["guidance_scale"] > 1
(
prompt_embeds,
prompt_attention_mask,
negative_prompt_embeds,
negative_prompt_attention_mask,
) = pipe.encode_prompt(
prompt,
do_classifier_free_guidance=do_classifier_free_guidance,
device=torch_device,
)
output_with_embeds = pipe(
prompt_embeds=prompt_embeds,
prompt_attention_mask=prompt_attention_mask,
**inputs,
).images[0]
max_diff = np.abs(output_with_prompt - output_with_embeds).max()
assert max_diff < 1e-4
@unittest.skip("xformers attention processor does not exist for Lumina")
def test_xformers_attention_forwardGenerator_pass(self):
pass
@slow
@require_torch_gpu
class LuminaText2ImgPipelineSlowTests(unittest.TestCase):
pipeline_class = LuminaText2ImgPipeline
repo_id = "Alpha-VLLM/Lumina-Next-SFT-diffusers"
def setUp(self):
super().setUp()
gc.collect()
torch.cuda.empty_cache()
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device="cpu").manual_seed(seed)
return {
"prompt": "A photo of a cat",
"num_inference_steps": 2,
"guidance_scale": 5.0,
"output_type": "np",
"generator": generator,
}
def test_lumina_inference(self):
pipe = self.pipeline_class.from_pretrained(self.repo_id, torch_dtype=torch.bfloat16)
pipe.enable_model_cpu_offload()
inputs = self.get_inputs(torch_device)
image = pipe(**inputs).images[0]
image_slice = image[0, :10, :10]
expected_slice = np.array(
[
[0.17773438, 0.18554688, 0.22070312],
[0.046875, 0.06640625, 0.10351562],
[0.0, 0.0, 0.02148438],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
],
dtype=np.float32,
)
max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), image_slice.flatten())
assert max_diff < 1e-4