|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import random |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from diffusers import DDIMScheduler, LDMSuperResolutionPipeline, UNet2DModel, VQModel |
|
from diffusers.utils import PIL_INTERPOLATION |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
floats_tensor, |
|
load_image, |
|
nightly, |
|
require_torch, |
|
torch_device, |
|
) |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class LDMSuperResolutionPipelineFastTests(unittest.TestCase): |
|
@property |
|
def dummy_image(self): |
|
batch_size = 1 |
|
num_channels = 3 |
|
sizes = (32, 32) |
|
|
|
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device) |
|
return image |
|
|
|
@property |
|
def dummy_uncond_unet(self): |
|
torch.manual_seed(0) |
|
model = UNet2DModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=6, |
|
out_channels=3, |
|
down_block_types=("DownBlock2D", "AttnDownBlock2D"), |
|
up_block_types=("AttnUpBlock2D", "UpBlock2D"), |
|
) |
|
return model |
|
|
|
@property |
|
def dummy_vq_model(self): |
|
torch.manual_seed(0) |
|
model = VQModel( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=3, |
|
) |
|
return model |
|
|
|
def test_inference_superresolution(self): |
|
device = "cpu" |
|
unet = self.dummy_uncond_unet |
|
scheduler = DDIMScheduler() |
|
vqvae = self.dummy_vq_model |
|
|
|
ldm = LDMSuperResolutionPipeline(unet=unet, vqvae=vqvae, scheduler=scheduler) |
|
ldm.to(device) |
|
ldm.set_progress_bar_config(disable=None) |
|
|
|
init_image = self.dummy_image.to(device) |
|
|
|
generator = torch.Generator(device=device).manual_seed(0) |
|
image = ldm(image=init_image, generator=generator, num_inference_steps=2, output_type="np").images |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array([0.8678, 0.8245, 0.6381, 0.6830, 0.4385, 0.5599, 0.4641, 0.6201, 0.5150]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
@unittest.skipIf(torch_device != "cuda", "This test requires a GPU") |
|
def test_inference_superresolution_fp16(self): |
|
unet = self.dummy_uncond_unet |
|
scheduler = DDIMScheduler() |
|
vqvae = self.dummy_vq_model |
|
|
|
|
|
unet = unet.half() |
|
vqvae = vqvae.half() |
|
|
|
ldm = LDMSuperResolutionPipeline(unet=unet, vqvae=vqvae, scheduler=scheduler) |
|
ldm.to(torch_device) |
|
ldm.set_progress_bar_config(disable=None) |
|
|
|
init_image = self.dummy_image.to(torch_device) |
|
|
|
image = ldm(init_image, num_inference_steps=2, output_type="np").images |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
|
|
|
|
@nightly |
|
@require_torch |
|
class LDMSuperResolutionPipelineIntegrationTests(unittest.TestCase): |
|
def test_inference_superresolution(self): |
|
init_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
"/vq_diffusion/teddy_bear_pool.png" |
|
) |
|
init_image = init_image.resize((64, 64), resample=PIL_INTERPOLATION["lanczos"]) |
|
|
|
ldm = LDMSuperResolutionPipeline.from_pretrained("duongna/ldm-super-resolution") |
|
ldm.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.manual_seed(0) |
|
image = ldm(image=init_image, generator=generator, num_inference_steps=20, output_type="np").images |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 256, 256, 3) |
|
expected_slice = np.array([0.7644, 0.7679, 0.7642, 0.7633, 0.7666, 0.7560, 0.7425, 0.7257, 0.6907]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|