|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import AutoTokenizer, BertModel, T5EncoderModel |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
DDPMScheduler, |
|
HunyuanDiT2DModel, |
|
HunyuanDiTControlNetPipeline, |
|
) |
|
from diffusers.models import HunyuanDiT2DControlNetModel, HunyuanDiT2DMultiControlNetModel |
|
from diffusers.utils import load_image |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
require_torch_gpu, |
|
slow, |
|
torch_device, |
|
) |
|
from diffusers.utils.torch_utils import randn_tensor |
|
|
|
from ..test_pipelines_common import PipelineTesterMixin |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class HunyuanDiTControlNetPipelineFastTests(unittest.TestCase, PipelineTesterMixin): |
|
pipeline_class = HunyuanDiTControlNetPipeline |
|
params = frozenset( |
|
[ |
|
"prompt", |
|
"height", |
|
"width", |
|
"guidance_scale", |
|
"negative_prompt", |
|
"prompt_embeds", |
|
"negative_prompt_embeds", |
|
] |
|
) |
|
batch_params = frozenset(["prompt", "negative_prompt"]) |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
transformer = HunyuanDiT2DModel( |
|
sample_size=16, |
|
num_layers=4, |
|
patch_size=2, |
|
attention_head_dim=8, |
|
num_attention_heads=3, |
|
in_channels=4, |
|
cross_attention_dim=32, |
|
cross_attention_dim_t5=32, |
|
pooled_projection_dim=16, |
|
hidden_size=24, |
|
activation_fn="gelu-approximate", |
|
) |
|
|
|
torch.manual_seed(0) |
|
controlnet = HunyuanDiT2DControlNetModel( |
|
sample_size=16, |
|
transformer_num_layers=4, |
|
patch_size=2, |
|
attention_head_dim=8, |
|
num_attention_heads=3, |
|
in_channels=4, |
|
cross_attention_dim=32, |
|
cross_attention_dim_t5=32, |
|
pooled_projection_dim=16, |
|
hidden_size=24, |
|
activation_fn="gelu-approximate", |
|
) |
|
|
|
torch.manual_seed(0) |
|
vae = AutoencoderKL() |
|
|
|
scheduler = DDPMScheduler() |
|
text_encoder = BertModel.from_pretrained("hf-internal-testing/tiny-random-BertModel") |
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel") |
|
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") |
|
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") |
|
|
|
components = { |
|
"transformer": transformer.eval(), |
|
"vae": vae.eval(), |
|
"scheduler": scheduler, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"text_encoder_2": text_encoder_2, |
|
"tokenizer_2": tokenizer_2, |
|
"safety_checker": None, |
|
"feature_extractor": None, |
|
"controlnet": controlnet, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device="cpu").manual_seed(seed) |
|
|
|
control_image = randn_tensor( |
|
(1, 3, 16, 16), |
|
generator=generator, |
|
device=torch.device(device), |
|
dtype=torch.float16, |
|
) |
|
|
|
controlnet_conditioning_scale = 0.5 |
|
|
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 5.0, |
|
"output_type": "np", |
|
"control_image": control_image, |
|
"controlnet_conditioning_scale": controlnet_conditioning_scale, |
|
} |
|
|
|
return inputs |
|
|
|
def test_controlnet_hunyuandit(self): |
|
components = self.get_dummy_components() |
|
pipe = HunyuanDiTControlNetPipeline(**components) |
|
pipe = pipe.to(torch_device, dtype=torch.float16) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
output = pipe(**inputs) |
|
image = output.images |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
assert image.shape == (1, 16, 16, 3) |
|
|
|
expected_slice = np.array( |
|
[0.6953125, 0.89208984, 0.59375, 0.5078125, 0.5786133, 0.6035156, 0.5839844, 0.53564453, 0.52246094] |
|
) |
|
|
|
assert ( |
|
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
), f"Expected: {expected_slice}, got: {image_slice.flatten()}" |
|
|
|
def test_inference_batch_single_identical(self): |
|
self._test_inference_batch_single_identical( |
|
expected_max_diff=1e-3, |
|
) |
|
|
|
def test_sequential_cpu_offload_forward_pass(self): |
|
|
|
pass |
|
|
|
def test_sequential_offload_forward_pass_twice(self): |
|
|
|
pass |
|
|
|
def test_save_load_optional_components(self): |
|
|
|
pass |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class HunyuanDiTControlNetPipelineSlowTests(unittest.TestCase): |
|
pipeline_class = HunyuanDiTControlNetPipeline |
|
|
|
def setUp(self): |
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_canny(self): |
|
controlnet = HunyuanDiT2DControlNetModel.from_pretrained( |
|
"Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Canny", torch_dtype=torch.float16 |
|
) |
|
pipe = HunyuanDiTControlNetPipeline.from_pretrained( |
|
"Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers", controlnet=controlnet, torch_dtype=torch.float16 |
|
) |
|
pipe.enable_model_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
prompt = "At night, an ancient Chinese-style lion statue stands in front of the hotel, its eyes gleaming as if guarding the building. The background is the hotel entrance at night, with a close-up, eye-level, and centered composition. This photo presents a realistic photographic style, embodies Chinese sculpture culture, and reveals a mysterious atmosphere." |
|
n_prompt = "" |
|
control_image = load_image( |
|
"https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Canny/resolve/main/canny.jpg?download=true" |
|
) |
|
|
|
output = pipe( |
|
prompt, |
|
negative_prompt=n_prompt, |
|
control_image=control_image, |
|
controlnet_conditioning_scale=0.5, |
|
guidance_scale=5.0, |
|
num_inference_steps=2, |
|
output_type="np", |
|
generator=generator, |
|
) |
|
image = output.images[0] |
|
|
|
assert image.shape == (1024, 1024, 3) |
|
|
|
original_image = image[-3:, -3:, -1].flatten() |
|
|
|
expected_image = np.array( |
|
[0.43652344, 0.4399414, 0.44921875, 0.45043945, 0.45703125, 0.44873047, 0.43579102, 0.44018555, 0.42578125] |
|
) |
|
|
|
assert np.abs(original_image.flatten() - expected_image).max() < 1e-2 |
|
|
|
def test_pose(self): |
|
controlnet = HunyuanDiT2DControlNetModel.from_pretrained( |
|
"Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Pose", torch_dtype=torch.float16 |
|
) |
|
pipe = HunyuanDiTControlNetPipeline.from_pretrained( |
|
"Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers", controlnet=controlnet, torch_dtype=torch.float16 |
|
) |
|
pipe.enable_model_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
prompt = "An Asian woman, dressed in a green top, wearing a purple headscarf and a purple scarf, stands in front of a blackboard. The background is the blackboard. The photo is presented in a close-up, eye-level, and centered composition, adopting a realistic photographic style" |
|
n_prompt = "" |
|
control_image = load_image( |
|
"https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Pose/resolve/main/pose.jpg?download=true" |
|
) |
|
|
|
output = pipe( |
|
prompt, |
|
negative_prompt=n_prompt, |
|
control_image=control_image, |
|
controlnet_conditioning_scale=0.5, |
|
guidance_scale=5.0, |
|
num_inference_steps=2, |
|
output_type="np", |
|
generator=generator, |
|
) |
|
image = output.images[0] |
|
|
|
assert image.shape == (1024, 1024, 3) |
|
|
|
original_image = image[-3:, -3:, -1].flatten() |
|
|
|
expected_image = np.array( |
|
[0.4091797, 0.4177246, 0.39526367, 0.4194336, 0.40356445, 0.3857422, 0.39208984, 0.40429688, 0.37451172] |
|
) |
|
|
|
assert np.abs(original_image.flatten() - expected_image).max() < 1e-2 |
|
|
|
def test_depth(self): |
|
controlnet = HunyuanDiT2DControlNetModel.from_pretrained( |
|
"Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Depth", torch_dtype=torch.float16 |
|
) |
|
pipe = HunyuanDiTControlNetPipeline.from_pretrained( |
|
"Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers", controlnet=controlnet, torch_dtype=torch.float16 |
|
) |
|
pipe.enable_model_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
prompt = "In the dense forest, a black and white panda sits quietly in green trees and red flowers, surrounded by mountains, rivers, and the ocean. The background is the forest in a bright environment." |
|
n_prompt = "" |
|
control_image = load_image( |
|
"https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Depth/resolve/main/depth.jpg?download=true" |
|
) |
|
|
|
output = pipe( |
|
prompt, |
|
negative_prompt=n_prompt, |
|
control_image=control_image, |
|
controlnet_conditioning_scale=0.5, |
|
guidance_scale=5.0, |
|
num_inference_steps=2, |
|
output_type="np", |
|
generator=generator, |
|
) |
|
image = output.images[0] |
|
|
|
assert image.shape == (1024, 1024, 3) |
|
|
|
original_image = image[-3:, -3:, -1].flatten() |
|
|
|
expected_image = np.array( |
|
[0.31982422, 0.32177734, 0.30126953, 0.3190918, 0.3100586, 0.31396484, 0.3232422, 0.33544922, 0.30810547] |
|
) |
|
|
|
assert np.abs(original_image.flatten() - expected_image).max() < 1e-2 |
|
|
|
def test_multi_controlnet(self): |
|
controlnet = HunyuanDiT2DControlNetModel.from_pretrained( |
|
"Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Canny", torch_dtype=torch.float16 |
|
) |
|
controlnet = HunyuanDiT2DMultiControlNetModel([controlnet, controlnet]) |
|
|
|
pipe = HunyuanDiTControlNetPipeline.from_pretrained( |
|
"Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers", controlnet=controlnet, torch_dtype=torch.float16 |
|
) |
|
pipe.enable_model_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
prompt = "At night, an ancient Chinese-style lion statue stands in front of the hotel, its eyes gleaming as if guarding the building. The background is the hotel entrance at night, with a close-up, eye-level, and centered composition. This photo presents a realistic photographic style, embodies Chinese sculpture culture, and reveals a mysterious atmosphere." |
|
n_prompt = "" |
|
control_image = load_image( |
|
"https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Canny/resolve/main/canny.jpg?download=true" |
|
) |
|
|
|
output = pipe( |
|
prompt, |
|
negative_prompt=n_prompt, |
|
control_image=[control_image, control_image], |
|
controlnet_conditioning_scale=[0.25, 0.25], |
|
guidance_scale=5.0, |
|
num_inference_steps=2, |
|
output_type="np", |
|
generator=generator, |
|
) |
|
image = output.images[0] |
|
|
|
assert image.shape == (1024, 1024, 3) |
|
|
|
original_image = image[-3:, -3:, -1].flatten() |
|
expected_image = np.array( |
|
[0.43652344, 0.44018555, 0.4494629, 0.44995117, 0.45654297, 0.44848633, 0.43603516, 0.4404297, 0.42626953] |
|
) |
|
|
|
assert np.abs(original_image.flatten() - expected_image).max() < 1e-2 |
|
|