working / diffusers /tests /pipelines /controlnet_hunyuandit /test_controlnet_hunyuandit.py
NadaGh's picture
End of training
dde5d93 verified
raw
history blame
13.1 kB
# coding=utf-8
# Copyright 2024 HuggingFace Inc and Tencent Hunyuan Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, BertModel, T5EncoderModel
from diffusers import (
AutoencoderKL,
DDPMScheduler,
HunyuanDiT2DModel,
HunyuanDiTControlNetPipeline,
)
from diffusers.models import HunyuanDiT2DControlNetModel, HunyuanDiT2DMultiControlNetModel
from diffusers.utils import load_image
from diffusers.utils.testing_utils import (
enable_full_determinism,
require_torch_gpu,
slow,
torch_device,
)
from diffusers.utils.torch_utils import randn_tensor
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class HunyuanDiTControlNetPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
pipeline_class = HunyuanDiTControlNetPipeline
params = frozenset(
[
"prompt",
"height",
"width",
"guidance_scale",
"negative_prompt",
"prompt_embeds",
"negative_prompt_embeds",
]
)
batch_params = frozenset(["prompt", "negative_prompt"])
def get_dummy_components(self):
torch.manual_seed(0)
transformer = HunyuanDiT2DModel(
sample_size=16,
num_layers=4,
patch_size=2,
attention_head_dim=8,
num_attention_heads=3,
in_channels=4,
cross_attention_dim=32,
cross_attention_dim_t5=32,
pooled_projection_dim=16,
hidden_size=24,
activation_fn="gelu-approximate",
)
torch.manual_seed(0)
controlnet = HunyuanDiT2DControlNetModel(
sample_size=16,
transformer_num_layers=4,
patch_size=2,
attention_head_dim=8,
num_attention_heads=3,
in_channels=4,
cross_attention_dim=32,
cross_attention_dim_t5=32,
pooled_projection_dim=16,
hidden_size=24,
activation_fn="gelu-approximate",
)
torch.manual_seed(0)
vae = AutoencoderKL()
scheduler = DDPMScheduler()
text_encoder = BertModel.from_pretrained("hf-internal-testing/tiny-random-BertModel")
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel")
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
components = {
"transformer": transformer.eval(),
"vae": vae.eval(),
"scheduler": scheduler,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"text_encoder_2": text_encoder_2,
"tokenizer_2": tokenizer_2,
"safety_checker": None,
"feature_extractor": None,
"controlnet": controlnet,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device="cpu").manual_seed(seed)
control_image = randn_tensor(
(1, 3, 16, 16),
generator=generator,
device=torch.device(device),
dtype=torch.float16,
)
controlnet_conditioning_scale = 0.5
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 5.0,
"output_type": "np",
"control_image": control_image,
"controlnet_conditioning_scale": controlnet_conditioning_scale,
}
return inputs
def test_controlnet_hunyuandit(self):
components = self.get_dummy_components()
pipe = HunyuanDiTControlNetPipeline(**components)
pipe = pipe.to(torch_device, dtype=torch.float16)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
output = pipe(**inputs)
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 16, 16, 3)
expected_slice = np.array(
[0.6953125, 0.89208984, 0.59375, 0.5078125, 0.5786133, 0.6035156, 0.5839844, 0.53564453, 0.52246094]
)
assert (
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
), f"Expected: {expected_slice}, got: {image_slice.flatten()}"
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(
expected_max_diff=1e-3,
)
def test_sequential_cpu_offload_forward_pass(self):
# TODO(YiYi) need to fix later
pass
def test_sequential_offload_forward_pass_twice(self):
# TODO(YiYi) need to fix later
pass
def test_save_load_optional_components(self):
# TODO(YiYi) need to fix later
pass
@slow
@require_torch_gpu
class HunyuanDiTControlNetPipelineSlowTests(unittest.TestCase):
pipeline_class = HunyuanDiTControlNetPipeline
def setUp(self):
super().setUp()
gc.collect()
torch.cuda.empty_cache()
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_canny(self):
controlnet = HunyuanDiT2DControlNetModel.from_pretrained(
"Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Canny", torch_dtype=torch.float16
)
pipe = HunyuanDiTControlNetPipeline.from_pretrained(
"Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers", controlnet=controlnet, torch_dtype=torch.float16
)
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device="cpu").manual_seed(0)
prompt = "At night, an ancient Chinese-style lion statue stands in front of the hotel, its eyes gleaming as if guarding the building. The background is the hotel entrance at night, with a close-up, eye-level, and centered composition. This photo presents a realistic photographic style, embodies Chinese sculpture culture, and reveals a mysterious atmosphere."
n_prompt = ""
control_image = load_image(
"https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Canny/resolve/main/canny.jpg?download=true"
)
output = pipe(
prompt,
negative_prompt=n_prompt,
control_image=control_image,
controlnet_conditioning_scale=0.5,
guidance_scale=5.0,
num_inference_steps=2,
output_type="np",
generator=generator,
)
image = output.images[0]
assert image.shape == (1024, 1024, 3)
original_image = image[-3:, -3:, -1].flatten()
expected_image = np.array(
[0.43652344, 0.4399414, 0.44921875, 0.45043945, 0.45703125, 0.44873047, 0.43579102, 0.44018555, 0.42578125]
)
assert np.abs(original_image.flatten() - expected_image).max() < 1e-2
def test_pose(self):
controlnet = HunyuanDiT2DControlNetModel.from_pretrained(
"Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Pose", torch_dtype=torch.float16
)
pipe = HunyuanDiTControlNetPipeline.from_pretrained(
"Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers", controlnet=controlnet, torch_dtype=torch.float16
)
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device="cpu").manual_seed(0)
prompt = "An Asian woman, dressed in a green top, wearing a purple headscarf and a purple scarf, stands in front of a blackboard. The background is the blackboard. The photo is presented in a close-up, eye-level, and centered composition, adopting a realistic photographic style"
n_prompt = ""
control_image = load_image(
"https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Pose/resolve/main/pose.jpg?download=true"
)
output = pipe(
prompt,
negative_prompt=n_prompt,
control_image=control_image,
controlnet_conditioning_scale=0.5,
guidance_scale=5.0,
num_inference_steps=2,
output_type="np",
generator=generator,
)
image = output.images[0]
assert image.shape == (1024, 1024, 3)
original_image = image[-3:, -3:, -1].flatten()
expected_image = np.array(
[0.4091797, 0.4177246, 0.39526367, 0.4194336, 0.40356445, 0.3857422, 0.39208984, 0.40429688, 0.37451172]
)
assert np.abs(original_image.flatten() - expected_image).max() < 1e-2
def test_depth(self):
controlnet = HunyuanDiT2DControlNetModel.from_pretrained(
"Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Depth", torch_dtype=torch.float16
)
pipe = HunyuanDiTControlNetPipeline.from_pretrained(
"Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers", controlnet=controlnet, torch_dtype=torch.float16
)
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device="cpu").manual_seed(0)
prompt = "In the dense forest, a black and white panda sits quietly in green trees and red flowers, surrounded by mountains, rivers, and the ocean. The background is the forest in a bright environment."
n_prompt = ""
control_image = load_image(
"https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Depth/resolve/main/depth.jpg?download=true"
)
output = pipe(
prompt,
negative_prompt=n_prompt,
control_image=control_image,
controlnet_conditioning_scale=0.5,
guidance_scale=5.0,
num_inference_steps=2,
output_type="np",
generator=generator,
)
image = output.images[0]
assert image.shape == (1024, 1024, 3)
original_image = image[-3:, -3:, -1].flatten()
expected_image = np.array(
[0.31982422, 0.32177734, 0.30126953, 0.3190918, 0.3100586, 0.31396484, 0.3232422, 0.33544922, 0.30810547]
)
assert np.abs(original_image.flatten() - expected_image).max() < 1e-2
def test_multi_controlnet(self):
controlnet = HunyuanDiT2DControlNetModel.from_pretrained(
"Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Canny", torch_dtype=torch.float16
)
controlnet = HunyuanDiT2DMultiControlNetModel([controlnet, controlnet])
pipe = HunyuanDiTControlNetPipeline.from_pretrained(
"Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers", controlnet=controlnet, torch_dtype=torch.float16
)
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device="cpu").manual_seed(0)
prompt = "At night, an ancient Chinese-style lion statue stands in front of the hotel, its eyes gleaming as if guarding the building. The background is the hotel entrance at night, with a close-up, eye-level, and centered composition. This photo presents a realistic photographic style, embodies Chinese sculpture culture, and reveals a mysterious atmosphere."
n_prompt = ""
control_image = load_image(
"https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Canny/resolve/main/canny.jpg?download=true"
)
output = pipe(
prompt,
negative_prompt=n_prompt,
control_image=[control_image, control_image],
controlnet_conditioning_scale=[0.25, 0.25],
guidance_scale=5.0,
num_inference_steps=2,
output_type="np",
generator=generator,
)
image = output.images[0]
assert image.shape == (1024, 1024, 3)
original_image = image[-3:, -3:, -1].flatten()
expected_image = np.array(
[0.43652344, 0.44018555, 0.4494629, 0.44995117, 0.45654297, 0.44848633, 0.43603516, 0.4404297, 0.42626953]
)
assert np.abs(original_image.flatten() - expected_image).max() < 1e-2