|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import AutoTokenizer, UMT5EncoderModel |
|
|
|
from diffusers import AuraFlowPipeline, AuraFlowTransformer2DModel, AutoencoderKL, FlowMatchEulerDiscreteScheduler |
|
from diffusers.utils.testing_utils import ( |
|
torch_device, |
|
) |
|
|
|
from ..test_pipelines_common import ( |
|
PipelineTesterMixin, |
|
check_qkv_fusion_matches_attn_procs_length, |
|
check_qkv_fusion_processors_exist, |
|
) |
|
|
|
|
|
class AuraFlowPipelineFastTests(unittest.TestCase, PipelineTesterMixin): |
|
pipeline_class = AuraFlowPipeline |
|
params = frozenset( |
|
[ |
|
"prompt", |
|
"height", |
|
"width", |
|
"guidance_scale", |
|
"negative_prompt", |
|
"prompt_embeds", |
|
"negative_prompt_embeds", |
|
] |
|
) |
|
batch_params = frozenset(["prompt", "negative_prompt"]) |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
transformer = AuraFlowTransformer2DModel( |
|
sample_size=32, |
|
patch_size=2, |
|
in_channels=4, |
|
num_mmdit_layers=1, |
|
num_single_dit_layers=1, |
|
attention_head_dim=8, |
|
num_attention_heads=4, |
|
caption_projection_dim=32, |
|
joint_attention_dim=32, |
|
out_channels=4, |
|
pos_embed_max_size=256, |
|
) |
|
|
|
text_encoder = UMT5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-umt5") |
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") |
|
|
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
sample_size=32, |
|
) |
|
|
|
scheduler = FlowMatchEulerDiscreteScheduler() |
|
|
|
return { |
|
"scheduler": scheduler, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"transformer": transformer, |
|
"vae": vae, |
|
} |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device="cpu").manual_seed(seed) |
|
|
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 5.0, |
|
"output_type": "np", |
|
"height": None, |
|
"width": None, |
|
} |
|
return inputs |
|
|
|
def test_aura_flow_prompt_embeds(self): |
|
pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) |
|
inputs = self.get_dummy_inputs(torch_device) |
|
|
|
output_with_prompt = pipe(**inputs).images[0] |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
prompt = inputs.pop("prompt") |
|
|
|
do_classifier_free_guidance = inputs["guidance_scale"] > 1 |
|
( |
|
prompt_embeds, |
|
prompt_attention_mask, |
|
negative_prompt_embeds, |
|
negative_prompt_attention_mask, |
|
) = pipe.encode_prompt( |
|
prompt, |
|
do_classifier_free_guidance=do_classifier_free_guidance, |
|
device=torch_device, |
|
) |
|
output_with_embeds = pipe( |
|
prompt_embeds=prompt_embeds, |
|
prompt_attention_mask=prompt_attention_mask, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
negative_prompt_attention_mask=negative_prompt_attention_mask, |
|
**inputs, |
|
).images[0] |
|
|
|
max_diff = np.abs(output_with_prompt - output_with_embeds).max() |
|
assert max_diff < 1e-4 |
|
|
|
def test_attention_slicing_forward_pass(self): |
|
|
|
|
|
return |
|
|
|
def test_fused_qkv_projections(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = pipe(**inputs).images |
|
original_image_slice = image[0, -3:, -3:, -1] |
|
|
|
|
|
|
|
pipe.transformer.fuse_qkv_projections() |
|
assert check_qkv_fusion_processors_exist( |
|
pipe.transformer |
|
), "Something wrong with the fused attention processors. Expected all the attention processors to be fused." |
|
assert check_qkv_fusion_matches_attn_procs_length( |
|
pipe.transformer, pipe.transformer.original_attn_processors |
|
), "Something wrong with the attention processors concerning the fused QKV projections." |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = pipe(**inputs).images |
|
image_slice_fused = image[0, -3:, -3:, -1] |
|
|
|
pipe.transformer.unfuse_qkv_projections() |
|
inputs = self.get_dummy_inputs(device) |
|
image = pipe(**inputs).images |
|
image_slice_disabled = image[0, -3:, -3:, -1] |
|
|
|
assert np.allclose( |
|
original_image_slice, image_slice_fused, atol=1e-3, rtol=1e-3 |
|
), "Fusion of QKV projections shouldn't affect the outputs." |
|
assert np.allclose( |
|
image_slice_fused, image_slice_disabled, atol=1e-3, rtol=1e-3 |
|
), "Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled." |
|
assert np.allclose( |
|
original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2 |
|
), "Original outputs should match when fused QKV projections are disabled." |
|
|
|
@unittest.skip("xformers attention processor does not exist for AuraFlow") |
|
def test_xformers_attention_forwardGenerator_pass(self): |
|
pass |
|
|