|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Any, Dict, Optional, Tuple, Union |
|
|
|
import torch |
|
|
|
from diffusers.configuration_utils import register_to_config |
|
from diffusers.models.controlnet import ( |
|
ControlNetConditioningEmbedding, |
|
ControlNetModel, |
|
ControlNetOutput, |
|
) |
|
from diffusers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class PromptDiffusionControlNetModel(ControlNetModel): |
|
""" |
|
A PromptDiffusionControlNet model. |
|
|
|
Args: |
|
in_channels (`int`, defaults to 4): |
|
The number of channels in the input sample. |
|
flip_sin_to_cos (`bool`, defaults to `True`): |
|
Whether to flip the sin to cos in the time embedding. |
|
freq_shift (`int`, defaults to 0): |
|
The frequency shift to apply to the time embedding. |
|
down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`): |
|
The tuple of downsample blocks to use. |
|
only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`): |
|
block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`): |
|
The tuple of output channels for each block. |
|
layers_per_block (`int`, defaults to 2): |
|
The number of layers per block. |
|
downsample_padding (`int`, defaults to 1): |
|
The padding to use for the downsampling convolution. |
|
mid_block_scale_factor (`float`, defaults to 1): |
|
The scale factor to use for the mid block. |
|
act_fn (`str`, defaults to "silu"): |
|
The activation function to use. |
|
norm_num_groups (`int`, *optional*, defaults to 32): |
|
The number of groups to use for the normalization. If None, normalization and activation layers is skipped |
|
in post-processing. |
|
norm_eps (`float`, defaults to 1e-5): |
|
The epsilon to use for the normalization. |
|
cross_attention_dim (`int`, defaults to 1280): |
|
The dimension of the cross attention features. |
|
transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1): |
|
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for |
|
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`], |
|
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`]. |
|
encoder_hid_dim (`int`, *optional*, defaults to None): |
|
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim` |
|
dimension to `cross_attention_dim`. |
|
encoder_hid_dim_type (`str`, *optional*, defaults to `None`): |
|
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text |
|
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`. |
|
attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8): |
|
The dimension of the attention heads. |
|
use_linear_projection (`bool`, defaults to `False`): |
|
class_embed_type (`str`, *optional*, defaults to `None`): |
|
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None, |
|
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`. |
|
addition_embed_type (`str`, *optional*, defaults to `None`): |
|
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or |
|
"text". "text" will use the `TextTimeEmbedding` layer. |
|
num_class_embeds (`int`, *optional*, defaults to 0): |
|
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing |
|
class conditioning with `class_embed_type` equal to `None`. |
|
upcast_attention (`bool`, defaults to `False`): |
|
resnet_time_scale_shift (`str`, defaults to `"default"`): |
|
Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`. |
|
projection_class_embeddings_input_dim (`int`, *optional*, defaults to `None`): |
|
The dimension of the `class_labels` input when `class_embed_type="projection"`. Required when |
|
`class_embed_type="projection"`. |
|
controlnet_conditioning_channel_order (`str`, defaults to `"rgb"`): |
|
The channel order of conditional image. Will convert to `rgb` if it's `bgr`. |
|
conditioning_embedding_out_channels (`tuple[int]`, *optional*, defaults to `(16, 32, 96, 256)`): |
|
The tuple of output channel for each block in the `conditioning_embedding` layer. |
|
global_pool_conditions (`bool`, defaults to `False`): |
|
TODO(Patrick) - unused parameter. |
|
addition_embed_type_num_heads (`int`, defaults to 64): |
|
The number of heads to use for the `TextTimeEmbedding` layer. |
|
""" |
|
|
|
_supports_gradient_checkpointing = True |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
in_channels: int = 4, |
|
conditioning_channels: int = 3, |
|
flip_sin_to_cos: bool = True, |
|
freq_shift: int = 0, |
|
down_block_types: Tuple[str, ...] = ( |
|
"CrossAttnDownBlock2D", |
|
"CrossAttnDownBlock2D", |
|
"CrossAttnDownBlock2D", |
|
"DownBlock2D", |
|
), |
|
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn", |
|
only_cross_attention: Union[bool, Tuple[bool]] = False, |
|
block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280), |
|
layers_per_block: int = 2, |
|
downsample_padding: int = 1, |
|
mid_block_scale_factor: float = 1, |
|
act_fn: str = "silu", |
|
norm_num_groups: Optional[int] = 32, |
|
norm_eps: float = 1e-5, |
|
cross_attention_dim: int = 1280, |
|
transformer_layers_per_block: Union[int, Tuple[int, ...]] = 1, |
|
encoder_hid_dim: Optional[int] = None, |
|
encoder_hid_dim_type: Optional[str] = None, |
|
attention_head_dim: Union[int, Tuple[int, ...]] = 8, |
|
num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None, |
|
use_linear_projection: bool = False, |
|
class_embed_type: Optional[str] = None, |
|
addition_embed_type: Optional[str] = None, |
|
addition_time_embed_dim: Optional[int] = None, |
|
num_class_embeds: Optional[int] = None, |
|
upcast_attention: bool = False, |
|
resnet_time_scale_shift: str = "default", |
|
projection_class_embeddings_input_dim: Optional[int] = None, |
|
controlnet_conditioning_channel_order: str = "rgb", |
|
conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256), |
|
global_pool_conditions: bool = False, |
|
addition_embed_type_num_heads: int = 64, |
|
): |
|
super().__init__( |
|
in_channels, |
|
conditioning_channels, |
|
flip_sin_to_cos, |
|
freq_shift, |
|
down_block_types, |
|
mid_block_type, |
|
only_cross_attention, |
|
block_out_channels, |
|
layers_per_block, |
|
downsample_padding, |
|
mid_block_scale_factor, |
|
act_fn, |
|
norm_num_groups, |
|
norm_eps, |
|
cross_attention_dim, |
|
transformer_layers_per_block, |
|
encoder_hid_dim, |
|
encoder_hid_dim_type, |
|
attention_head_dim, |
|
num_attention_heads, |
|
use_linear_projection, |
|
class_embed_type, |
|
addition_embed_type, |
|
addition_time_embed_dim, |
|
num_class_embeds, |
|
upcast_attention, |
|
resnet_time_scale_shift, |
|
projection_class_embeddings_input_dim, |
|
controlnet_conditioning_channel_order, |
|
conditioning_embedding_out_channels, |
|
global_pool_conditions, |
|
addition_embed_type_num_heads, |
|
) |
|
self.controlnet_query_cond_embedding = ControlNetConditioningEmbedding( |
|
conditioning_embedding_channels=block_out_channels[0], |
|
block_out_channels=conditioning_embedding_out_channels, |
|
conditioning_channels=3, |
|
) |
|
|
|
def forward( |
|
self, |
|
sample: torch.Tensor, |
|
timestep: Union[torch.Tensor, float, int], |
|
encoder_hidden_states: torch.Tensor, |
|
controlnet_cond: torch.Tensor, |
|
controlnet_query_cond: torch.Tensor, |
|
conditioning_scale: float = 1.0, |
|
class_labels: Optional[torch.Tensor] = None, |
|
timestep_cond: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
guess_mode: bool = False, |
|
return_dict: bool = True, |
|
) -> Union[ControlNetOutput, Tuple[Tuple[torch.Tensor, ...], torch.Tensor]]: |
|
""" |
|
The [`~PromptDiffusionControlNetModel`] forward method. |
|
|
|
Args: |
|
sample (`torch.Tensor`): |
|
The noisy input tensor. |
|
timestep (`Union[torch.Tensor, float, int]`): |
|
The number of timesteps to denoise an input. |
|
encoder_hidden_states (`torch.Tensor`): |
|
The encoder hidden states. |
|
controlnet_cond (`torch.Tensor`): |
|
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`. |
|
controlnet_query_cond (`torch.Tensor`): |
|
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`. |
|
conditioning_scale (`float`, defaults to `1.0`): |
|
The scale factor for ControlNet outputs. |
|
class_labels (`torch.Tensor`, *optional*, defaults to `None`): |
|
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings. |
|
timestep_cond (`torch.Tensor`, *optional*, defaults to `None`): |
|
Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the |
|
timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep |
|
embeddings. |
|
attention_mask (`torch.Tensor`, *optional*, defaults to `None`): |
|
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask |
|
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large |
|
negative values to the attention scores corresponding to "discard" tokens. |
|
added_cond_kwargs (`dict`): |
|
Additional conditions for the Stable Diffusion XL UNet. |
|
cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`): |
|
A kwargs dictionary that if specified is passed along to the `AttnProcessor`. |
|
guess_mode (`bool`, defaults to `False`): |
|
In this mode, the ControlNet encoder tries its best to recognize the input content of the input even if |
|
you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended. |
|
return_dict (`bool`, defaults to `True`): |
|
Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple. |
|
|
|
Returns: |
|
[`~models.controlnet.ControlNetOutput`] **or** `tuple`: |
|
If `return_dict` is `True`, a [`~models.controlnet.ControlNetOutput`] is returned, otherwise a tuple is |
|
returned where the first element is the sample tensor. |
|
""" |
|
|
|
channel_order = self.config.controlnet_conditioning_channel_order |
|
|
|
if channel_order == "rgb": |
|
|
|
... |
|
elif channel_order == "bgr": |
|
controlnet_cond = torch.flip(controlnet_cond, dims=[1]) |
|
else: |
|
raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}") |
|
|
|
|
|
if attention_mask is not None: |
|
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 |
|
attention_mask = attention_mask.unsqueeze(1) |
|
|
|
|
|
timesteps = timestep |
|
if not torch.is_tensor(timesteps): |
|
|
|
|
|
is_mps = sample.device.type == "mps" |
|
if isinstance(timestep, float): |
|
dtype = torch.float32 if is_mps else torch.float64 |
|
else: |
|
dtype = torch.int32 if is_mps else torch.int64 |
|
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) |
|
elif len(timesteps.shape) == 0: |
|
timesteps = timesteps[None].to(sample.device) |
|
|
|
|
|
timesteps = timesteps.expand(sample.shape[0]) |
|
|
|
t_emb = self.time_proj(timesteps) |
|
|
|
|
|
|
|
|
|
t_emb = t_emb.to(dtype=sample.dtype) |
|
|
|
emb = self.time_embedding(t_emb, timestep_cond) |
|
aug_emb = None |
|
|
|
if self.class_embedding is not None: |
|
if class_labels is None: |
|
raise ValueError("class_labels should be provided when num_class_embeds > 0") |
|
|
|
if self.config.class_embed_type == "timestep": |
|
class_labels = self.time_proj(class_labels) |
|
|
|
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype) |
|
emb = emb + class_emb |
|
|
|
if self.config.addition_embed_type is not None: |
|
if self.config.addition_embed_type == "text": |
|
aug_emb = self.add_embedding(encoder_hidden_states) |
|
|
|
elif self.config.addition_embed_type == "text_time": |
|
if "text_embeds" not in added_cond_kwargs: |
|
raise ValueError( |
|
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`" |
|
) |
|
text_embeds = added_cond_kwargs.get("text_embeds") |
|
if "time_ids" not in added_cond_kwargs: |
|
raise ValueError( |
|
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`" |
|
) |
|
time_ids = added_cond_kwargs.get("time_ids") |
|
time_embeds = self.add_time_proj(time_ids.flatten()) |
|
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1)) |
|
|
|
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1) |
|
add_embeds = add_embeds.to(emb.dtype) |
|
aug_emb = self.add_embedding(add_embeds) |
|
|
|
emb = emb + aug_emb if aug_emb is not None else emb |
|
|
|
|
|
sample = self.conv_in(sample) |
|
|
|
controlnet_cond = self.controlnet_cond_embedding(controlnet_cond) |
|
controlnet_query_cond = self.controlnet_query_cond_embedding(controlnet_query_cond) |
|
sample = sample + controlnet_cond + controlnet_query_cond |
|
|
|
|
|
down_block_res_samples = (sample,) |
|
for downsample_block in self.down_blocks: |
|
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: |
|
sample, res_samples = downsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=attention_mask, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
) |
|
else: |
|
sample, res_samples = downsample_block(hidden_states=sample, temb=emb) |
|
|
|
down_block_res_samples += res_samples |
|
|
|
|
|
if self.mid_block is not None: |
|
if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention: |
|
sample = self.mid_block( |
|
sample, |
|
emb, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=attention_mask, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
) |
|
else: |
|
sample = self.mid_block(sample, emb) |
|
|
|
|
|
|
|
controlnet_down_block_res_samples = () |
|
|
|
for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks): |
|
down_block_res_sample = controlnet_block(down_block_res_sample) |
|
controlnet_down_block_res_samples = controlnet_down_block_res_samples + (down_block_res_sample,) |
|
|
|
down_block_res_samples = controlnet_down_block_res_samples |
|
|
|
mid_block_res_sample = self.controlnet_mid_block(sample) |
|
|
|
|
|
if guess_mode and not self.config.global_pool_conditions: |
|
scales = torch.logspace(-1, 0, len(down_block_res_samples) + 1, device=sample.device) |
|
scales = scales * conditioning_scale |
|
down_block_res_samples = [sample * scale for sample, scale in zip(down_block_res_samples, scales)] |
|
mid_block_res_sample = mid_block_res_sample * scales[-1] |
|
else: |
|
down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples] |
|
mid_block_res_sample = mid_block_res_sample * conditioning_scale |
|
|
|
if self.config.global_pool_conditions: |
|
down_block_res_samples = [ |
|
torch.mean(sample, dim=(2, 3), keepdim=True) for sample in down_block_res_samples |
|
] |
|
mid_block_res_sample = torch.mean(mid_block_res_sample, dim=(2, 3), keepdim=True) |
|
|
|
if not return_dict: |
|
return (down_block_res_samples, mid_block_res_sample) |
|
|
|
return ControlNetOutput( |
|
down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample |
|
) |
|
|