File size: 8,493 Bytes
dde5d93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

import argparse
import typing
from typing import Optional, Union

import torch
from PIL import Image
from torchvision import transforms  # type: ignore

from diffusers.image_processor import VaeImageProcessor
from diffusers.models.autoencoders.autoencoder_kl import (
    AutoencoderKL,
    AutoencoderKLOutput,
)
from diffusers.models.autoencoders.autoencoder_tiny import (
    AutoencoderTiny,
    AutoencoderTinyOutput,
)
from diffusers.models.autoencoders.vae import DecoderOutput


SupportedAutoencoder = Union[AutoencoderKL, AutoencoderTiny]


def load_vae_model(
    *,
    device: torch.device,
    model_name_or_path: str,
    revision: Optional[str],
    variant: Optional[str],
    # NOTE: use subfolder="vae" if the pointed model is for stable diffusion as a whole instead of just the VAE
    subfolder: Optional[str],
    use_tiny_nn: bool,
) -> SupportedAutoencoder:
    if use_tiny_nn:
        # NOTE: These scaling factors don't have to be the same as each other.
        down_scale = 2
        up_scale = 2
        vae = AutoencoderTiny.from_pretrained(  # type: ignore
            model_name_or_path,
            subfolder=subfolder,
            revision=revision,
            variant=variant,
            downscaling_scaling_factor=down_scale,
            upsampling_scaling_factor=up_scale,
        )
        assert isinstance(vae, AutoencoderTiny)
    else:
        vae = AutoencoderKL.from_pretrained(  # type: ignore
            model_name_or_path,
            subfolder=subfolder,
            revision=revision,
            variant=variant,
        )
        assert isinstance(vae, AutoencoderKL)
    vae = vae.to(device)
    vae.eval()  # Set the model to inference mode
    return vae


def pil_to_nhwc(
    *,
    device: torch.device,
    image: Image.Image,
) -> torch.Tensor:
    assert image.mode == "RGB"
    transform = transforms.ToTensor()
    nhwc = transform(image).unsqueeze(0).to(device)  # type: ignore
    assert isinstance(nhwc, torch.Tensor)
    return nhwc


def nhwc_to_pil(
    *,
    nhwc: torch.Tensor,
) -> Image.Image:
    assert nhwc.shape[0] == 1
    hwc = nhwc.squeeze(0).cpu()
    return transforms.ToPILImage()(hwc)  # type: ignore


def concatenate_images(
    *,
    left: Image.Image,
    right: Image.Image,
    vertical: bool = False,
) -> Image.Image:
    width1, height1 = left.size
    width2, height2 = right.size
    if vertical:
        total_height = height1 + height2
        max_width = max(width1, width2)
        new_image = Image.new("RGB", (max_width, total_height))
        new_image.paste(left, (0, 0))
        new_image.paste(right, (0, height1))
    else:
        total_width = width1 + width2
        max_height = max(height1, height2)
        new_image = Image.new("RGB", (total_width, max_height))
        new_image.paste(left, (0, 0))
        new_image.paste(right, (width1, 0))
    return new_image


def to_latent(
    *,
    rgb_nchw: torch.Tensor,
    vae: SupportedAutoencoder,
) -> torch.Tensor:
    rgb_nchw = VaeImageProcessor.normalize(rgb_nchw)  # type: ignore
    encoding_nchw = vae.encode(typing.cast(torch.FloatTensor, rgb_nchw))
    if isinstance(encoding_nchw, AutoencoderKLOutput):
        latent = encoding_nchw.latent_dist.sample()  # type: ignore
        assert isinstance(latent, torch.Tensor)
    elif isinstance(encoding_nchw, AutoencoderTinyOutput):
        latent = encoding_nchw.latents
        do_internal_vae_scaling = False  # Is this needed?
        if do_internal_vae_scaling:
            latent = vae.scale_latents(latent).mul(255).round().byte()  # type: ignore
            latent = vae.unscale_latents(latent / 255.0)  # type: ignore
            assert isinstance(latent, torch.Tensor)
    else:
        assert False, f"Unknown encoding type: {type(encoding_nchw)}"
    return latent


def from_latent(
    *,
    latent_nchw: torch.Tensor,
    vae: SupportedAutoencoder,
) -> torch.Tensor:
    decoding_nchw = vae.decode(latent_nchw)  # type: ignore
    assert isinstance(decoding_nchw, DecoderOutput)
    rgb_nchw = VaeImageProcessor.denormalize(decoding_nchw.sample)  # type: ignore
    assert isinstance(rgb_nchw, torch.Tensor)
    return rgb_nchw


def main_kwargs(
    *,
    device: torch.device,
    input_image_path: str,
    pretrained_model_name_or_path: str,
    revision: Optional[str],
    variant: Optional[str],
    subfolder: Optional[str],
    use_tiny_nn: bool,
) -> None:
    vae = load_vae_model(
        device=device,
        model_name_or_path=pretrained_model_name_or_path,
        revision=revision,
        variant=variant,
        subfolder=subfolder,
        use_tiny_nn=use_tiny_nn,
    )
    original_pil = Image.open(input_image_path).convert("RGB")
    original_image = pil_to_nhwc(
        device=device,
        image=original_pil,
    )
    print(f"Original image shape: {original_image.shape}")
    reconstructed_image: Optional[torch.Tensor] = None

    with torch.no_grad():
        latent_image = to_latent(rgb_nchw=original_image, vae=vae)
        print(f"Latent shape: {latent_image.shape}")
        reconstructed_image = from_latent(latent_nchw=latent_image, vae=vae)
        reconstructed_pil = nhwc_to_pil(nhwc=reconstructed_image)
    combined_image = concatenate_images(
        left=original_pil,
        right=reconstructed_pil,
        vertical=False,
    )
    combined_image.show("Original | Reconstruction")
    print(f"Reconstructed image shape: {reconstructed_image.shape}")


def parse_args() -> argparse.Namespace:
    parser = argparse.ArgumentParser(description="Inference with VAE")
    parser.add_argument(
        "--input_image",
        type=str,
        required=True,
        help="Path to the input image for inference.",
    )
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        required=True,
        help="Path to pretrained VAE model.",
    )
    parser.add_argument(
        "--revision",
        type=str,
        default=None,
        help="Model version.",
    )
    parser.add_argument(
        "--variant",
        type=str,
        default=None,
        help="Model file variant, e.g., 'fp16'.",
    )
    parser.add_argument(
        "--subfolder",
        type=str,
        default=None,
        help="Subfolder in the model file.",
    )
    parser.add_argument(
        "--use_cuda",
        action="store_true",
        help="Use CUDA if available.",
    )
    parser.add_argument(
        "--use_tiny_nn",
        action="store_true",
        help="Use tiny neural network.",
    )
    return parser.parse_args()


# EXAMPLE USAGE:
#
# python vae_roundtrip.py --use_cuda --pretrained_model_name_or_path "runwayml/stable-diffusion-v1-5" --subfolder "vae" --input_image "foo.png"
#
# python vae_roundtrip.py --use_cuda --pretrained_model_name_or_path "madebyollin/taesd" --use_tiny_nn --input_image "foo.png"
#
def main_cli() -> None:
    args = parse_args()

    input_image_path = args.input_image
    assert isinstance(input_image_path, str)

    pretrained_model_name_or_path = args.pretrained_model_name_or_path
    assert isinstance(pretrained_model_name_or_path, str)

    revision = args.revision
    assert isinstance(revision, (str, type(None)))

    variant = args.variant
    assert isinstance(variant, (str, type(None)))

    subfolder = args.subfolder
    assert isinstance(subfolder, (str, type(None)))

    use_cuda = args.use_cuda
    assert isinstance(use_cuda, bool)

    use_tiny_nn = args.use_tiny_nn
    assert isinstance(use_tiny_nn, bool)

    device = torch.device("cuda" if use_cuda else "cpu")

    main_kwargs(
        device=device,
        input_image_path=input_image_path,
        pretrained_model_name_or_path=pretrained_model_name_or_path,
        revision=revision,
        variant=variant,
        subfolder=subfolder,
        use_tiny_nn=use_tiny_nn,
    )


if __name__ == "__main__":
    main_cli()