File size: 12,768 Bytes
dde5d93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import inspect
import random
import unittest

import numpy as np
import torch
from PIL import Image
from transformers import (
    CLIPImageProcessor,
    CLIPTextConfig,
    CLIPTextModel,
    CLIPTextModelWithProjection,
    CLIPTokenizer,
    CLIPVisionConfig,
    CLIPVisionModelWithProjection,
)

from diffusers import (
    AutoencoderKL,
    AutoPipelineForInpainting,
    EulerDiscreteScheduler,
    StableDiffusionXLInpaintPipeline,
    StableDiffusionXLPAGInpaintPipeline,
    UNet2DConditionModel,
)
from diffusers.utils.testing_utils import (
    enable_full_determinism,
    floats_tensor,
    load_image,
    require_torch_gpu,
    slow,
    torch_device,
)

from ..pipeline_params import (
    TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
    TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
    TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS,
)
from ..test_pipelines_common import (
    IPAdapterTesterMixin,
    PipelineFromPipeTesterMixin,
    PipelineLatentTesterMixin,
    PipelineTesterMixin,
    SDXLOptionalComponentsTesterMixin,
)


enable_full_determinism()


class StableDiffusionXLPAGInpaintPipelineFastTests(
    PipelineTesterMixin,
    IPAdapterTesterMixin,
    PipelineLatentTesterMixin,
    PipelineFromPipeTesterMixin,
    SDXLOptionalComponentsTesterMixin,
    unittest.TestCase,
):
    pipeline_class = StableDiffusionXLPAGInpaintPipeline
    params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS.union({"pag_scale", "pag_adaptive_scale"})
    batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
    image_params = frozenset([])
    image_latents_params = frozenset([])
    callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS.union(
        {"add_text_embeds", "add_time_ids", "mask", "masked_image_latents"}
    )

    # based on tests.pipelines.stable_diffusion_xl.test_stable_diffusion_xl_inpaint.StableDiffusionXLInpaintPipelineFastTests.get_dummy_components
    def get_dummy_components(
        self, skip_first_text_encoder=False, time_cond_proj_dim=None, requires_aesthetics_score=False
    ):
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            time_cond_proj_dim=time_cond_proj_dim,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            # SD2-specific config below
            attention_head_dim=(2, 4),
            use_linear_projection=True,
            addition_embed_type="text_time",
            addition_time_embed_dim=8,
            transformer_layers_per_block=(1, 2),
            projection_class_embeddings_input_dim=72 if requires_aesthetics_score else 80,  # 5 * 8 + 32
            cross_attention_dim=64 if not skip_first_text_encoder else 32,
        )
        scheduler = EulerDiscreteScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            steps_offset=1,
            beta_schedule="scaled_linear",
            timestep_spacing="leading",
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
            sample_size=128,
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
            # SD2-specific config below
            hidden_act="gelu",
            projection_dim=32,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config)
        tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        torch.manual_seed(0)
        image_encoder_config = CLIPVisionConfig(
            hidden_size=32,
            image_size=224,
            projection_dim=32,
            intermediate_size=37,
            num_attention_heads=4,
            num_channels=3,
            num_hidden_layers=5,
            patch_size=14,
        )

        image_encoder = CLIPVisionModelWithProjection(image_encoder_config)

        feature_extractor = CLIPImageProcessor(
            crop_size=224,
            do_center_crop=True,
            do_normalize=True,
            do_resize=True,
            image_mean=[0.48145466, 0.4578275, 0.40821073],
            image_std=[0.26862954, 0.26130258, 0.27577711],
            resample=3,
            size=224,
        )

        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder if not skip_first_text_encoder else None,
            "tokenizer": tokenizer if not skip_first_text_encoder else None,
            "text_encoder_2": text_encoder_2,
            "tokenizer_2": tokenizer_2,
            "image_encoder": image_encoder,
            "feature_extractor": feature_extractor,
            "requires_aesthetics_score": requires_aesthetics_score,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched
        image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
        image = image.cpu().permute(0, 2, 3, 1)[0]
        init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
        # create mask
        image[8:, 8:, :] = 255
        mask_image = Image.fromarray(np.uint8(image)).convert("L").resize((64, 64))

        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "image": init_image,
            "mask_image": mask_image,
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "strength": 1.0,
            "pag_scale": 0.9,
            "output_type": "np",
        }
        return inputs

    def test_pag_disable_enable(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components(requires_aesthetics_score=True)

        # base pipeline
        pipe_sd = StableDiffusionXLInpaintPipeline(**components)
        pipe_sd = pipe_sd.to(device)
        pipe_sd.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        del inputs["pag_scale"]
        assert (
            "pag_scale" not in inspect.signature(pipe_sd.__call__).parameters
        ), f"`pag_scale` should not be a call parameter of the base pipeline {pipe_sd.__class__.__name__}."
        out = pipe_sd(**inputs).images[0, -3:, -3:, -1]

        # pag disabled with pag_scale=0.0
        pipe_pag = self.pipeline_class(**components)
        pipe_pag = pipe_pag.to(device)
        pipe_pag.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        inputs["pag_scale"] = 0.0
        out_pag_disabled = pipe_pag(**inputs).images[0, -3:, -3:, -1]

        # pag enabled
        pipe_pag = self.pipeline_class(**components, pag_applied_layers=["mid", "up", "down"])
        pipe_pag = pipe_pag.to(device)
        pipe_pag.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        out_pag_enabled = pipe_pag(**inputs).images[0, -3:, -3:, -1]

        assert np.abs(out.flatten() - out_pag_disabled.flatten()).max() < 1e-3
        assert np.abs(out.flatten() - out_pag_enabled.flatten()).max() > 1e-3

    def test_save_load_optional_components(self):
        self._test_save_load_optional_components()

    def test_pag_inference(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components(requires_aesthetics_score=True)

        pipe_pag = self.pipeline_class(**components, pag_applied_layers=["mid", "up", "down"])
        pipe_pag = pipe_pag.to(device)
        pipe_pag.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = pipe_pag(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (
            1,
            64,
            64,
            3,
        ), f"the shape of the output image should be (1, 64, 64, 3) but got {image.shape}"
        expected_slice = np.array([0.8366, 0.5513, 0.6105, 0.6213, 0.6957, 0.7400, 0.6614, 0.6102, 0.5239])

        max_diff = np.abs(image_slice.flatten() - expected_slice).max()
        assert max_diff < 1e-3, f"output is different from expected, {image_slice.flatten()}"


@slow
@require_torch_gpu
class StableDiffusionXLPAGInpaintPipelineIntegrationTests(unittest.TestCase):
    repo_id = "stabilityai/stable-diffusion-xl-base-1.0"

    def setUp(self):
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def get_inputs(self, device, generator_device="cpu", seed=0, guidance_scale=7.0):
        img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
        mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"

        init_image = load_image(img_url).convert("RGB")
        mask_image = load_image(mask_url).convert("RGB")

        generator = torch.Generator(device=generator_device).manual_seed(seed)
        inputs = {
            "prompt": "A majestic tiger sitting on a bench",
            "generator": generator,
            "image": init_image,
            "mask_image": mask_image,
            "strength": 0.8,
            "num_inference_steps": 3,
            "guidance_scale": guidance_scale,
            "pag_scale": 3.0,
            "output_type": "np",
        }
        return inputs

    def test_pag_cfg(self):
        pipeline = AutoPipelineForInpainting.from_pretrained(self.repo_id, enable_pag=True, torch_dtype=torch.float16)
        pipeline.enable_model_cpu_offload()
        pipeline.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = pipeline(**inputs).images

        image_slice = image[0, -3:, -3:, -1].flatten()
        assert image.shape == (1, 1024, 1024, 3)
        expected_slice = np.array(
            [0.41385046, 0.39608297, 0.4360491, 0.26872507, 0.32187328, 0.4242474, 0.2603805, 0.34167895, 0.46561807]
        )
        assert (
            np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
        ), f"output is different from expected, {image_slice.flatten()}"

    def test_pag_uncond(self):
        pipeline = AutoPipelineForInpainting.from_pretrained(self.repo_id, enable_pag=True, torch_dtype=torch.float16)
        pipeline.enable_model_cpu_offload()
        pipeline.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device, guidance_scale=0.0)
        image = pipeline(**inputs).images

        image_slice = image[0, -3:, -3:, -1].flatten()
        assert image.shape == (1, 1024, 1024, 3)
        expected_slice = np.array(
            [0.41597816, 0.39302617, 0.44287828, 0.2687074, 0.28315824, 0.40582314, 0.20877528, 0.2380802, 0.39447647]
        )
        assert (
            np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
        ), f"output is different from expected, {image_slice.flatten()}"