File size: 49,337 Bytes
8c305f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
---
base_model: jhgan/ko-sroberta-multitask
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 제36조에 따른 수탁기관 정보 공시 방법은?
- text: 원장 인계  필요한 절차는?
- text: 미국에서 I140 허가 통지서 사본을 받으려면 어떻게 해야 하나요?
- text: 기술자문계획서 작성  연구일정과 기술보유자 선발 고려 이유는?
- text: 연구윤리활동비와 연구실안전관리비의 공통 경비 관리는?
inference: true
model-index:
- name: SetFit with jhgan/ko-sroberta-multitask
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.9951690821256038
      name: Accuracy
---

# SetFit with jhgan/ko-sroberta-multitask

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [jhgan/ko-sroberta-multitask](https://huggingface.co/jhgan/ko-sroberta-multitask) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [jhgan/ko-sroberta-multitask](https://huggingface.co/jhgan/ko-sroberta-multitask)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 128 tokens
- **Number of Classes:** 2 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label   | Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|:--------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| rag     | <ul><li>'QR코드 스캔 후 필요한 서류와 절차는?'</li><li>'연구용역사업의 원가계산서 관련, 일정 금액 이상 지출 승인은 누구에게 받나요?'</li><li>'계약부서 승인 없이 지급신청 시 주의할 점은?'</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| general | <ul><li>'아래 글의 요지 좀 설명해줘.\n  \n  다른 문화권에서 온 여자와 데이트. 관계에 대해 좋은 점이 많이 있습니다. 공통된 직업적 관심사, 동일한 성욕, 그리고 서로를 존중한다는 점은 제게는 새로운 관계입니다(항상 남성에 대해 안 좋은 태도를 가진 여자들과만 사귀어 왔죠). 그녀는 저를 정말 사랑해요. \n  \n  하지만 장기적인 생존 가능성에 대해 몇 가지 심각한 우려가 있습니다. 하나는 부모님에 관한 것입니다. 제 부모님은 우리가 사귀는 사이라는 사실을 알게 되자 "네가 미국에 머물 수 있는 티켓이라는 걸 기억하라"고 말씀하셨어요. 우리가 진짜 사귀는 사이라는 사실을 알게 된 부모님은 제가 얼마나 버는지 알고 싶어 하셨고(저는 대학원생입니다), 존경의 표시로 은퇴한 부모님을 부양하는 전통에 대해 제가 괜찮은지 확인하고 싶어 하셨습니다(부모님은 그런 도움이 필요 없을 만큼 잘 살고 계시지만요). 여자친구는 이에 대해 부모님의 의견에 동의하며 제가 괜찮지 않다면 돈을 더 벌어서 직접 해야 한다고 말했습니다. 또한 여자친구는 제가 이전에 결혼했고 지금은 이혼했다는 사실을 부모님이 \'절대 알 수 없다\'고 말합니다. \n  \n  제가 극복하거나 간과할 수 있었던 다른 문제들도 있지만(한 가지 예로, 그녀는 사교적이지 않지만 저는 사교적입니다), 이러한 문제들이 결합되어 그녀와의 미래는 앞으로 많은 문제가 예고되어 있고 위험하다고 느낍니다. 이전 결혼 생활에서 저는 그런 징후를 무시하고 대가를 치렀고, 그 역사를 반복하고 싶지 않습니다. 동시에 저와 성적으로도 잘 어울리는 파트너가 있다는 것은 정말 좋은 일입니다. \n  \n  다른 사람들은 이런 다문화적인 상황에서 어떤 경험을 했는지, 특히 장기적인 경험이 있다면 어떤지 궁금합니다.'</li><li>'너는 누구냐니까'</li><li>'문제와 몇 가지 답 옵션("A", "B", "C", "D"와 연관된)이 주어집니다. 상식적인 지식을 바탕으로 정답을 선택해야 합니다. 연상에 기반한 답은 피하고, 답안 세트는 연상을 넘어서는 상식을 파악하기 위해 의도적으로 선택된 것입니다. \'A\', \'B\', \'C\', \'D\', \'E\' 중 하나를 제외하고는 다른 문자를 생성하지 말고 각 문제에 대해 하나의 답만 작성하세요.\n\n폰이라는 이름은 매우 다재다능할 수 있지만, 모든 부품이 중요한 것은 무엇일까요?\n(A)체스 게임 (B)계획 (C)체스 세트 (D)체커 (E)노스 캐롤라이나'</li></ul> |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 0.9952   |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("NTIS/sroberta-embedding")
# Run inference
preds = model("원장 인계 전 필요한 절차는?")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count   | 2   | 24.824 | 722 |

| Label   | Training Sample Count |
|:--------|:----------------------|
| rag     | 553                   |
| general | 447                   |

### Training Hyperparameters
- batch_size: (64, 64)
- num_epochs: (4, 4)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True

### Training Results
| Epoch   | Step      | Training Loss | Validation Loss |
|:-------:|:---------:|:-------------:|:---------------:|
| 0.0001  | 1         | 0.2655        | -               |
| 0.0063  | 50        | 0.2091        | -               |
| 0.0126  | 100       | 0.2327        | -               |
| 0.0189  | 150       | 0.1578        | -               |
| 0.0253  | 200       | 0.0836        | -               |
| 0.0316  | 250       | 0.0274        | -               |
| 0.0379  | 300       | 0.0068        | -               |
| 0.0442  | 350       | 0.0032        | -               |
| 0.0505  | 400       | 0.0013        | -               |
| 0.0568  | 450       | 0.0012        | -               |
| 0.0632  | 500       | 0.0009        | -               |
| 0.0695  | 550       | 0.0006        | -               |
| 0.0758  | 600       | 0.0004        | -               |
| 0.0821  | 650       | 0.0004        | -               |
| 0.0884  | 700       | 0.0003        | -               |
| 0.0947  | 750       | 0.0003        | -               |
| 0.1011  | 800       | 0.0003        | -               |
| 0.1074  | 850       | 0.0002        | -               |
| 0.1137  | 900       | 0.0002        | -               |
| 0.1200  | 950       | 0.0002        | -               |
| 0.1263  | 1000      | 0.0002        | -               |
| 0.1326  | 1050      | 0.0001        | -               |
| 0.1390  | 1100      | 0.0001        | -               |
| 0.1453  | 1150      | 0.0001        | -               |
| 0.1516  | 1200      | 0.0001        | -               |
| 0.1579  | 1250      | 0.0001        | -               |
| 0.1642  | 1300      | 0.0001        | -               |
| 0.1705  | 1350      | 0.0001        | -               |
| 0.1769  | 1400      | 0.0001        | -               |
| 0.1832  | 1450      | 0.0001        | -               |
| 0.1895  | 1500      | 0.0001        | -               |
| 0.1958  | 1550      | 0.0001        | -               |
| 0.2021  | 1600      | 0.0           | -               |
| 0.2084  | 1650      | 0.0001        | -               |
| 0.2148  | 1700      | 0.0001        | -               |
| 0.2211  | 1750      | 0.0           | -               |
| 0.2274  | 1800      | 0.0001        | -               |
| 0.2337  | 1850      | 0.0           | -               |
| 0.2400  | 1900      | 0.0           | -               |
| 0.2463  | 1950      | 0.0           | -               |
| 0.2527  | 2000      | 0.0           | -               |
| 0.2590  | 2050      | 0.0           | -               |
| 0.2653  | 2100      | 0.0           | -               |
| 0.2716  | 2150      | 0.0           | -               |
| 0.2779  | 2200      | 0.0           | -               |
| 0.2842  | 2250      | 0.0           | -               |
| 0.2906  | 2300      | 0.0           | -               |
| 0.2969  | 2350      | 0.0           | -               |
| 0.3032  | 2400      | 0.0           | -               |
| 0.3095  | 2450      | 0.0           | -               |
| 0.3158  | 2500      | 0.0           | -               |
| 0.3221  | 2550      | 0.0           | -               |
| 0.3284  | 2600      | 0.0           | -               |
| 0.3348  | 2650      | 0.0           | -               |
| 0.3411  | 2700      | 0.0           | -               |
| 0.3474  | 2750      | 0.0           | -               |
| 0.3537  | 2800      | 0.0           | -               |
| 0.3600  | 2850      | 0.0           | -               |
| 0.3663  | 2900      | 0.0           | -               |
| 0.3727  | 2950      | 0.0           | -               |
| 0.3790  | 3000      | 0.0           | -               |
| 0.3853  | 3050      | 0.0           | -               |
| 0.3916  | 3100      | 0.0           | -               |
| 0.3979  | 3150      | 0.0           | -               |
| 0.4042  | 3200      | 0.0           | -               |
| 0.4106  | 3250      | 0.0           | -               |
| 0.4169  | 3300      | 0.0           | -               |
| 0.4232  | 3350      | 0.0           | -               |
| 0.4295  | 3400      | 0.0           | -               |
| 0.4358  | 3450      | 0.0           | -               |
| 0.4421  | 3500      | 0.0           | -               |
| 0.4485  | 3550      | 0.0           | -               |
| 0.4548  | 3600      | 0.0           | -               |
| 0.4611  | 3650      | 0.0           | -               |
| 0.4674  | 3700      | 0.0           | -               |
| 0.4737  | 3750      | 0.0           | -               |
| 0.4800  | 3800      | 0.0           | -               |
| 0.4864  | 3850      | 0.0           | -               |
| 0.4927  | 3900      | 0.0           | -               |
| 0.4990  | 3950      | 0.0           | -               |
| 0.5053  | 4000      | 0.0           | -               |
| 0.5116  | 4050      | 0.0           | -               |
| 0.5179  | 4100      | 0.0           | -               |
| 0.5243  | 4150      | 0.0           | -               |
| 0.5306  | 4200      | 0.0           | -               |
| 0.5369  | 4250      | 0.0           | -               |
| 0.5432  | 4300      | 0.0           | -               |
| 0.5495  | 4350      | 0.0004        | -               |
| 0.5558  | 4400      | 0.0001        | -               |
| 0.5622  | 4450      | 0.0           | -               |
| 0.5685  | 4500      | 0.0096        | -               |
| 0.5748  | 4550      | 0.0           | -               |
| 0.5811  | 4600      | 0.0           | -               |
| 0.5874  | 4650      | 0.0           | -               |
| 0.5937  | 4700      | 0.0           | -               |
| 0.6001  | 4750      | 0.0           | -               |
| 0.6064  | 4800      | 0.0           | -               |
| 0.6127  | 4850      | 0.0           | -               |
| 0.6190  | 4900      | 0.0           | -               |
| 0.6253  | 4950      | 0.0           | -               |
| 0.6316  | 5000      | 0.0           | -               |
| 0.6379  | 5050      | 0.0           | -               |
| 0.6443  | 5100      | 0.0           | -               |
| 0.6506  | 5150      | 0.0           | -               |
| 0.6569  | 5200      | 0.0           | -               |
| 0.6632  | 5250      | 0.0           | -               |
| 0.6695  | 5300      | 0.0           | -               |
| 0.6758  | 5350      | 0.0           | -               |
| 0.6822  | 5400      | 0.0           | -               |
| 0.6885  | 5450      | 0.0           | -               |
| 0.6948  | 5500      | 0.0           | -               |
| 0.7011  | 5550      | 0.0           | -               |
| 0.7074  | 5600      | 0.0           | -               |
| 0.7137  | 5650      | 0.0           | -               |
| 0.7201  | 5700      | 0.0           | -               |
| 0.7264  | 5750      | 0.0           | -               |
| 0.7327  | 5800      | 0.0           | -               |
| 0.7390  | 5850      | 0.0           | -               |
| 0.7453  | 5900      | 0.0           | -               |
| 0.7516  | 5950      | 0.0           | -               |
| 0.7580  | 6000      | 0.0           | -               |
| 0.7643  | 6050      | 0.0           | -               |
| 0.7706  | 6100      | 0.0           | -               |
| 0.7769  | 6150      | 0.0           | -               |
| 0.7832  | 6200      | 0.0           | -               |
| 0.7895  | 6250      | 0.0           | -               |
| 0.7959  | 6300      | 0.0           | -               |
| 0.8022  | 6350      | 0.0           | -               |
| 0.8085  | 6400      | 0.0           | -               |
| 0.8148  | 6450      | 0.0           | -               |
| 0.8211  | 6500      | 0.0           | -               |
| 0.8274  | 6550      | 0.0           | -               |
| 0.8338  | 6600      | 0.0           | -               |
| 0.8401  | 6650      | 0.0           | -               |
| 0.8464  | 6700      | 0.0           | -               |
| 0.8527  | 6750      | 0.0           | -               |
| 0.8590  | 6800      | 0.0           | -               |
| 0.8653  | 6850      | 0.0           | -               |
| 0.8717  | 6900      | 0.0           | -               |
| 0.8780  | 6950      | 0.0           | -               |
| 0.8843  | 7000      | 0.0           | -               |
| 0.8906  | 7050      | 0.0           | -               |
| 0.8969  | 7100      | 0.0           | -               |
| 0.9032  | 7150      | 0.0           | -               |
| 0.9096  | 7200      | 0.0           | -               |
| 0.9159  | 7250      | 0.0           | -               |
| 0.9222  | 7300      | 0.0           | -               |
| 0.9285  | 7350      | 0.0           | -               |
| 0.9348  | 7400      | 0.0           | -               |
| 0.9411  | 7450      | 0.0           | -               |
| 0.9474  | 7500      | 0.0           | -               |
| 0.9538  | 7550      | 0.0           | -               |
| 0.9601  | 7600      | 0.0           | -               |
| 0.9664  | 7650      | 0.0           | -               |
| 0.9727  | 7700      | 0.0           | -               |
| 0.9790  | 7750      | 0.0           | -               |
| 0.9853  | 7800      | 0.0           | -               |
| 0.9917  | 7850      | 0.0           | -               |
| 0.9980  | 7900      | 0.0           | -               |
| 1.0     | 7916      | -             | 0.0096          |
| 1.0043  | 7950      | 0.0           | -               |
| 1.0106  | 8000      | 0.0           | -               |
| 1.0169  | 8050      | 0.0           | -               |
| 1.0232  | 8100      | 0.0           | -               |
| 1.0296  | 8150      | 0.0           | -               |
| 1.0359  | 8200      | 0.0           | -               |
| 1.0422  | 8250      | 0.0           | -               |
| 1.0485  | 8300      | 0.0           | -               |
| 1.0548  | 8350      | 0.0           | -               |
| 1.0611  | 8400      | 0.0           | -               |
| 1.0675  | 8450      | 0.0           | -               |
| 1.0738  | 8500      | 0.0           | -               |
| 1.0801  | 8550      | 0.0           | -               |
| 1.0864  | 8600      | 0.0           | -               |
| 1.0927  | 8650      | 0.0           | -               |
| 1.0990  | 8700      | 0.0           | -               |
| 1.1054  | 8750      | 0.0           | -               |
| 1.1117  | 8800      | 0.0           | -               |
| 1.1180  | 8850      | 0.0           | -               |
| 1.1243  | 8900      | 0.0           | -               |
| 1.1306  | 8950      | 0.0           | -               |
| 1.1369  | 9000      | 0.0           | -               |
| 1.1433  | 9050      | 0.0           | -               |
| 1.1496  | 9100      | 0.0           | -               |
| 1.1559  | 9150      | 0.0           | -               |
| 1.1622  | 9200      | 0.0           | -               |
| 1.1685  | 9250      | 0.0           | -               |
| 1.1748  | 9300      | 0.0           | -               |
| 1.1812  | 9350      | 0.0           | -               |
| 1.1875  | 9400      | 0.0           | -               |
| 1.1938  | 9450      | 0.0           | -               |
| 1.2001  | 9500      | 0.0           | -               |
| 1.2064  | 9550      | 0.0           | -               |
| 1.2127  | 9600      | 0.0           | -               |
| 1.2191  | 9650      | 0.0           | -               |
| 1.2254  | 9700      | 0.0           | -               |
| 1.2317  | 9750      | 0.0           | -               |
| 1.2380  | 9800      | 0.0           | -               |
| 1.2443  | 9850      | 0.0           | -               |
| 1.2506  | 9900      | 0.0           | -               |
| 1.2569  | 9950      | 0.0           | -               |
| 1.2633  | 10000     | 0.0           | -               |
| 1.2696  | 10050     | 0.0           | -               |
| 1.2759  | 10100     | 0.0           | -               |
| 1.2822  | 10150     | 0.0           | -               |
| 1.2885  | 10200     | 0.0           | -               |
| 1.2948  | 10250     | 0.0           | -               |
| 1.3012  | 10300     | 0.0           | -               |
| 1.3075  | 10350     | 0.0           | -               |
| 1.3138  | 10400     | 0.0           | -               |
| 1.3201  | 10450     | 0.0           | -               |
| 1.3264  | 10500     | 0.0           | -               |
| 1.3327  | 10550     | 0.0           | -               |
| 1.3391  | 10600     | 0.0           | -               |
| 1.3454  | 10650     | 0.0           | -               |
| 1.3517  | 10700     | 0.0           | -               |
| 1.3580  | 10750     | 0.0           | -               |
| 1.3643  | 10800     | 0.0           | -               |
| 1.3706  | 10850     | 0.0           | -               |
| 1.3770  | 10900     | 0.0           | -               |
| 1.3833  | 10950     | 0.0           | -               |
| 1.3896  | 11000     | 0.0           | -               |
| 1.3959  | 11050     | 0.0           | -               |
| 1.4022  | 11100     | 0.0           | -               |
| 1.4085  | 11150     | 0.0           | -               |
| 1.4149  | 11200     | 0.0           | -               |
| 1.4212  | 11250     | 0.0           | -               |
| 1.4275  | 11300     | 0.0           | -               |
| 1.4338  | 11350     | 0.0           | -               |
| 1.4401  | 11400     | 0.0           | -               |
| 1.4464  | 11450     | 0.0           | -               |
| 1.4528  | 11500     | 0.0           | -               |
| 1.4591  | 11550     | 0.0           | -               |
| 1.4654  | 11600     | 0.0           | -               |
| 1.4717  | 11650     | 0.0           | -               |
| 1.4780  | 11700     | 0.0           | -               |
| 1.4843  | 11750     | 0.0           | -               |
| 1.4907  | 11800     | 0.0           | -               |
| 1.4970  | 11850     | 0.0           | -               |
| 1.5033  | 11900     | 0.0           | -               |
| 1.5096  | 11950     | 0.0           | -               |
| 1.5159  | 12000     | 0.0           | -               |
| 1.5222  | 12050     | 0.0           | -               |
| 1.5285  | 12100     | 0.0           | -               |
| 1.5349  | 12150     | 0.0           | -               |
| 1.5412  | 12200     | 0.0           | -               |
| 1.5475  | 12250     | 0.0           | -               |
| 1.5538  | 12300     | 0.0           | -               |
| 1.5601  | 12350     | 0.0           | -               |
| 1.5664  | 12400     | 0.0           | -               |
| 1.5728  | 12450     | 0.0           | -               |
| 1.5791  | 12500     | 0.0           | -               |
| 1.5854  | 12550     | 0.0           | -               |
| 1.5917  | 12600     | 0.0           | -               |
| 1.5980  | 12650     | 0.0           | -               |
| 1.6043  | 12700     | 0.0           | -               |
| 1.6107  | 12750     | 0.0           | -               |
| 1.6170  | 12800     | 0.0           | -               |
| 1.6233  | 12850     | 0.0           | -               |
| 1.6296  | 12900     | 0.0           | -               |
| 1.6359  | 12950     | 0.0           | -               |
| 1.6422  | 13000     | 0.0           | -               |
| 1.6486  | 13050     | 0.0           | -               |
| 1.6549  | 13100     | 0.0           | -               |
| 1.6612  | 13150     | 0.0           | -               |
| 1.6675  | 13200     | 0.0           | -               |
| 1.6738  | 13250     | 0.0           | -               |
| 1.6801  | 13300     | 0.0           | -               |
| 1.6865  | 13350     | 0.0           | -               |
| 1.6928  | 13400     | 0.0           | -               |
| 1.6991  | 13450     | 0.0           | -               |
| 1.7054  | 13500     | 0.0           | -               |
| 1.7117  | 13550     | 0.0           | -               |
| 1.7180  | 13600     | 0.0           | -               |
| 1.7244  | 13650     | 0.0           | -               |
| 1.7307  | 13700     | 0.0           | -               |
| 1.7370  | 13750     | 0.0           | -               |
| 1.7433  | 13800     | 0.0           | -               |
| 1.7496  | 13850     | 0.0           | -               |
| 1.7559  | 13900     | 0.0           | -               |
| 1.7623  | 13950     | 0.0           | -               |
| 1.7686  | 14000     | 0.0           | -               |
| 1.7749  | 14050     | 0.0           | -               |
| 1.7812  | 14100     | 0.0           | -               |
| 1.7875  | 14150     | 0.0           | -               |
| 1.7938  | 14200     | 0.0           | -               |
| 1.8002  | 14250     | 0.0           | -               |
| 1.8065  | 14300     | 0.0           | -               |
| 1.8128  | 14350     | 0.0           | -               |
| 1.8191  | 14400     | 0.0           | -               |
| 1.8254  | 14450     | 0.0           | -               |
| 1.8317  | 14500     | 0.0           | -               |
| 1.8380  | 14550     | 0.0           | -               |
| 1.8444  | 14600     | 0.0           | -               |
| 1.8507  | 14650     | 0.0           | -               |
| 1.8570  | 14700     | 0.0           | -               |
| 1.8633  | 14750     | 0.0           | -               |
| 1.8696  | 14800     | 0.0           | -               |
| 1.8759  | 14850     | 0.0           | -               |
| 1.8823  | 14900     | 0.0           | -               |
| 1.8886  | 14950     | 0.0           | -               |
| 1.8949  | 15000     | 0.0           | -               |
| 1.9012  | 15050     | 0.0           | -               |
| 1.9075  | 15100     | 0.0           | -               |
| 1.9138  | 15150     | 0.0           | -               |
| 1.9202  | 15200     | 0.0           | -               |
| 1.9265  | 15250     | 0.0           | -               |
| 1.9328  | 15300     | 0.0           | -               |
| 1.9391  | 15350     | 0.0           | -               |
| 1.9454  | 15400     | 0.0           | -               |
| 1.9517  | 15450     | 0.0           | -               |
| 1.9581  | 15500     | 0.0           | -               |
| 1.9644  | 15550     | 0.0           | -               |
| 1.9707  | 15600     | 0.0           | -               |
| 1.9770  | 15650     | 0.0           | -               |
| 1.9833  | 15700     | 0.0           | -               |
| 1.9896  | 15750     | 0.0           | -               |
| 1.9960  | 15800     | 0.0           | -               |
| **2.0** | **15832** | **-**         | **0.0096**      |
| 2.0023  | 15850     | 0.0           | -               |
| 2.0086  | 15900     | 0.0           | -               |
| 2.0149  | 15950     | 0.0           | -               |
| 2.0212  | 16000     | 0.0           | -               |
| 2.0275  | 16050     | 0.0           | -               |
| 2.0339  | 16100     | 0.0           | -               |
| 2.0402  | 16150     | 0.0           | -               |
| 2.0465  | 16200     | 0.0           | -               |
| 2.0528  | 16250     | 0.0           | -               |
| 2.0591  | 16300     | 0.0           | -               |
| 2.0654  | 16350     | 0.0           | -               |
| 2.0718  | 16400     | 0.0           | -               |
| 2.0781  | 16450     | 0.0           | -               |
| 2.0844  | 16500     | 0.0           | -               |
| 2.0907  | 16550     | 0.0           | -               |
| 2.0970  | 16600     | 0.0           | -               |
| 2.1033  | 16650     | 0.0           | -               |
| 2.1097  | 16700     | 0.0           | -               |
| 2.1160  | 16750     | 0.0           | -               |
| 2.1223  | 16800     | 0.0           | -               |
| 2.1286  | 16850     | 0.0           | -               |
| 2.1349  | 16900     | 0.0           | -               |
| 2.1412  | 16950     | 0.0           | -               |
| 2.1475  | 17000     | 0.0           | -               |
| 2.1539  | 17050     | 0.0           | -               |
| 2.1602  | 17100     | 0.0           | -               |
| 2.1665  | 17150     | 0.0           | -               |
| 2.1728  | 17200     | 0.0           | -               |
| 2.1791  | 17250     | 0.0           | -               |
| 2.1854  | 17300     | 0.0           | -               |
| 2.1918  | 17350     | 0.0           | -               |
| 2.1981  | 17400     | 0.0           | -               |
| 2.2044  | 17450     | 0.0           | -               |
| 2.2107  | 17500     | 0.0           | -               |
| 2.2170  | 17550     | 0.0           | -               |
| 2.2233  | 17600     | 0.0           | -               |
| 2.2297  | 17650     | 0.0           | -               |
| 2.2360  | 17700     | 0.0           | -               |
| 2.2423  | 17750     | 0.0           | -               |
| 2.2486  | 17800     | 0.0           | -               |
| 2.2549  | 17850     | 0.0           | -               |
| 2.2612  | 17900     | 0.0           | -               |
| 2.2676  | 17950     | 0.0           | -               |
| 2.2739  | 18000     | 0.0           | -               |
| 2.2802  | 18050     | 0.0           | -               |
| 2.2865  | 18100     | 0.0           | -               |
| 2.2928  | 18150     | 0.0           | -               |
| 2.2991  | 18200     | 0.0           | -               |
| 2.3055  | 18250     | 0.0           | -               |
| 2.3118  | 18300     | 0.0           | -               |
| 2.3181  | 18350     | 0.0           | -               |
| 2.3244  | 18400     | 0.0           | -               |
| 2.3307  | 18450     | 0.0           | -               |
| 2.3370  | 18500     | 0.0           | -               |
| 2.3434  | 18550     | 0.0           | -               |
| 2.3497  | 18600     | 0.0           | -               |
| 2.3560  | 18650     | 0.0           | -               |
| 2.3623  | 18700     | 0.0           | -               |
| 2.3686  | 18750     | 0.0           | -               |
| 2.3749  | 18800     | 0.0           | -               |
| 2.3813  | 18850     | 0.0           | -               |
| 2.3876  | 18900     | 0.0           | -               |
| 2.3939  | 18950     | 0.0           | -               |
| 2.4002  | 19000     | 0.0           | -               |
| 2.4065  | 19050     | 0.0           | -               |
| 2.4128  | 19100     | 0.0           | -               |
| 2.4192  | 19150     | 0.0           | -               |
| 2.4255  | 19200     | 0.0           | -               |
| 2.4318  | 19250     | 0.0           | -               |
| 2.4381  | 19300     | 0.0           | -               |
| 2.4444  | 19350     | 0.0           | -               |
| 2.4507  | 19400     | 0.0           | -               |
| 2.4570  | 19450     | 0.0           | -               |
| 2.4634  | 19500     | 0.0           | -               |
| 2.4697  | 19550     | 0.0           | -               |
| 2.4760  | 19600     | 0.0           | -               |
| 2.4823  | 19650     | 0.0           | -               |
| 2.4886  | 19700     | 0.0           | -               |
| 2.4949  | 19750     | 0.0           | -               |
| 2.5013  | 19800     | 0.0           | -               |
| 2.5076  | 19850     | 0.0           | -               |
| 2.5139  | 19900     | 0.0           | -               |
| 2.5202  | 19950     | 0.0           | -               |
| 2.5265  | 20000     | 0.0           | -               |
| 2.5328  | 20050     | 0.0           | -               |
| 2.5392  | 20100     | 0.0           | -               |
| 2.5455  | 20150     | 0.0           | -               |
| 2.5518  | 20200     | 0.0           | -               |
| 2.5581  | 20250     | 0.0           | -               |
| 2.5644  | 20300     | 0.0           | -               |
| 2.5707  | 20350     | 0.0           | -               |
| 2.5771  | 20400     | 0.0           | -               |
| 2.5834  | 20450     | 0.0           | -               |
| 2.5897  | 20500     | 0.0           | -               |
| 2.5960  | 20550     | 0.0           | -               |
| 2.6023  | 20600     | 0.0           | -               |
| 2.6086  | 20650     | 0.0           | -               |
| 2.6150  | 20700     | 0.0           | -               |
| 2.6213  | 20750     | 0.0           | -               |
| 2.6276  | 20800     | 0.0           | -               |
| 2.6339  | 20850     | 0.0           | -               |
| 2.6402  | 20900     | 0.0           | -               |
| 2.6465  | 20950     | 0.0           | -               |
| 2.6529  | 21000     | 0.0           | -               |
| 2.6592  | 21050     | 0.0           | -               |
| 2.6655  | 21100     | 0.0           | -               |
| 2.6718  | 21150     | 0.0           | -               |
| 2.6781  | 21200     | 0.0           | -               |
| 2.6844  | 21250     | 0.0           | -               |
| 2.6908  | 21300     | 0.0           | -               |
| 2.6971  | 21350     | 0.0           | -               |
| 2.7034  | 21400     | 0.0           | -               |
| 2.7097  | 21450     | 0.0           | -               |
| 2.7160  | 21500     | 0.0           | -               |
| 2.7223  | 21550     | 0.0           | -               |
| 2.7287  | 21600     | 0.0           | -               |
| 2.7350  | 21650     | 0.0           | -               |
| 2.7413  | 21700     | 0.0           | -               |
| 2.7476  | 21750     | 0.0           | -               |
| 2.7539  | 21800     | 0.0           | -               |
| 2.7602  | 21850     | 0.0           | -               |
| 2.7665  | 21900     | 0.0           | -               |
| 2.7729  | 21950     | 0.0           | -               |
| 2.7792  | 22000     | 0.0           | -               |
| 2.7855  | 22050     | 0.0           | -               |
| 2.7918  | 22100     | 0.0           | -               |
| 2.7981  | 22150     | 0.0           | -               |
| 2.8044  | 22200     | 0.0           | -               |
| 2.8108  | 22250     | 0.0           | -               |
| 2.8171  | 22300     | 0.0           | -               |
| 2.8234  | 22350     | 0.0           | -               |
| 2.8297  | 22400     | 0.0           | -               |
| 2.8360  | 22450     | 0.0           | -               |
| 2.8423  | 22500     | 0.0           | -               |
| 2.8487  | 22550     | 0.0           | -               |
| 2.8550  | 22600     | 0.0           | -               |
| 2.8613  | 22650     | 0.0           | -               |
| 2.8676  | 22700     | 0.0           | -               |
| 2.8739  | 22750     | 0.0           | -               |
| 2.8802  | 22800     | 0.0           | -               |
| 2.8866  | 22850     | 0.0           | -               |
| 2.8929  | 22900     | 0.0           | -               |
| 2.8992  | 22950     | 0.0           | -               |
| 2.9055  | 23000     | 0.0           | -               |
| 2.9118  | 23050     | 0.0           | -               |
| 2.9181  | 23100     | 0.0           | -               |
| 2.9245  | 23150     | 0.0           | -               |
| 2.9308  | 23200     | 0.0           | -               |
| 2.9371  | 23250     | 0.0           | -               |
| 2.9434  | 23300     | 0.0           | -               |
| 2.9497  | 23350     | 0.0           | -               |
| 2.9560  | 23400     | 0.0           | -               |
| 2.9624  | 23450     | 0.0           | -               |
| 2.9687  | 23500     | 0.0           | -               |
| 2.9750  | 23550     | 0.0           | -               |
| 2.9813  | 23600     | 0.0           | -               |
| 2.9876  | 23650     | 0.0           | -               |
| 2.9939  | 23700     | 0.0           | -               |
| 3.0     | 23748     | -             | 0.0128          |
| 3.0003  | 23750     | 0.0           | -               |
| 3.0066  | 23800     | 0.0           | -               |
| 3.0129  | 23850     | 0.0           | -               |
| 3.0192  | 23900     | 0.0           | -               |
| 3.0255  | 23950     | 0.0           | -               |
| 3.0318  | 24000     | 0.0           | -               |
| 3.0382  | 24050     | 0.0           | -               |
| 3.0445  | 24100     | 0.0           | -               |
| 3.0508  | 24150     | 0.0           | -               |
| 3.0571  | 24200     | 0.0           | -               |
| 3.0634  | 24250     | 0.0           | -               |
| 3.0697  | 24300     | 0.0           | -               |
| 3.0760  | 24350     | 0.0           | -               |
| 3.0824  | 24400     | 0.0           | -               |
| 3.0887  | 24450     | 0.0           | -               |
| 3.0950  | 24500     | 0.0           | -               |
| 3.1013  | 24550     | 0.0           | -               |
| 3.1076  | 24600     | 0.0           | -               |
| 3.1139  | 24650     | 0.0           | -               |
| 3.1203  | 24700     | 0.0           | -               |
| 3.1266  | 24750     | 0.0           | -               |
| 3.1329  | 24800     | 0.0           | -               |
| 3.1392  | 24850     | 0.0           | -               |
| 3.1455  | 24900     | 0.0           | -               |
| 3.1518  | 24950     | 0.0           | -               |
| 3.1582  | 25000     | 0.0           | -               |
| 3.1645  | 25050     | 0.0           | -               |
| 3.1708  | 25100     | 0.0           | -               |
| 3.1771  | 25150     | 0.0           | -               |
| 3.1834  | 25200     | 0.0           | -               |
| 3.1897  | 25250     | 0.0           | -               |
| 3.1961  | 25300     | 0.0           | -               |
| 3.2024  | 25350     | 0.0           | -               |
| 3.2087  | 25400     | 0.0           | -               |
| 3.2150  | 25450     | 0.0           | -               |
| 3.2213  | 25500     | 0.0           | -               |
| 3.2276  | 25550     | 0.0           | -               |
| 3.2340  | 25600     | 0.0           | -               |
| 3.2403  | 25650     | 0.0           | -               |
| 3.2466  | 25700     | 0.0           | -               |
| 3.2529  | 25750     | 0.0           | -               |
| 3.2592  | 25800     | 0.0           | -               |
| 3.2655  | 25850     | 0.0           | -               |
| 3.2719  | 25900     | 0.0           | -               |
| 3.2782  | 25950     | 0.0           | -               |
| 3.2845  | 26000     | 0.0           | -               |
| 3.2908  | 26050     | 0.0           | -               |
| 3.2971  | 26100     | 0.0           | -               |
| 3.3034  | 26150     | 0.0           | -               |
| 3.3098  | 26200     | 0.0           | -               |
| 3.3161  | 26250     | 0.0           | -               |
| 3.3224  | 26300     | 0.0           | -               |
| 3.3287  | 26350     | 0.0           | -               |
| 3.3350  | 26400     | 0.0           | -               |
| 3.3413  | 26450     | 0.0           | -               |
| 3.3477  | 26500     | 0.0           | -               |
| 3.3540  | 26550     | 0.0           | -               |
| 3.3603  | 26600     | 0.0           | -               |
| 3.3666  | 26650     | 0.0           | -               |
| 3.3729  | 26700     | 0.0           | -               |
| 3.3792  | 26750     | 0.0           | -               |
| 3.3855  | 26800     | 0.0           | -               |
| 3.3919  | 26850     | 0.0           | -               |
| 3.3982  | 26900     | 0.0           | -               |
| 3.4045  | 26950     | 0.0           | -               |
| 3.4108  | 27000     | 0.0           | -               |
| 3.4171  | 27050     | 0.0           | -               |
| 3.4234  | 27100     | 0.0           | -               |
| 3.4298  | 27150     | 0.0           | -               |
| 3.4361  | 27200     | 0.0           | -               |
| 3.4424  | 27250     | 0.0           | -               |
| 3.4487  | 27300     | 0.0           | -               |
| 3.4550  | 27350     | 0.0           | -               |
| 3.4613  | 27400     | 0.0           | -               |
| 3.4677  | 27450     | 0.0           | -               |
| 3.4740  | 27500     | 0.0           | -               |
| 3.4803  | 27550     | 0.0           | -               |
| 3.4866  | 27600     | 0.0           | -               |
| 3.4929  | 27650     | 0.0           | -               |
| 3.4992  | 27700     | 0.0           | -               |
| 3.5056  | 27750     | 0.0           | -               |
| 3.5119  | 27800     | 0.0           | -               |
| 3.5182  | 27850     | 0.0           | -               |
| 3.5245  | 27900     | 0.0           | -               |
| 3.5308  | 27950     | 0.0           | -               |
| 3.5371  | 28000     | 0.0           | -               |
| 3.5435  | 28050     | 0.0           | -               |
| 3.5498  | 28100     | 0.0           | -               |
| 3.5561  | 28150     | 0.0           | -               |
| 3.5624  | 28200     | 0.0           | -               |
| 3.5687  | 28250     | 0.0           | -               |
| 3.5750  | 28300     | 0.0           | -               |
| 3.5814  | 28350     | 0.0           | -               |
| 3.5877  | 28400     | 0.0           | -               |
| 3.5940  | 28450     | 0.0           | -               |
| 3.6003  | 28500     | 0.0           | -               |
| 3.6066  | 28550     | 0.0           | -               |
| 3.6129  | 28600     | 0.0           | -               |
| 3.6193  | 28650     | 0.0           | -               |
| 3.6256  | 28700     | 0.0           | -               |
| 3.6319  | 28750     | 0.0           | -               |
| 3.6382  | 28800     | 0.0           | -               |
| 3.6445  | 28850     | 0.0           | -               |
| 3.6508  | 28900     | 0.0           | -               |
| 3.6572  | 28950     | 0.0           | -               |
| 3.6635  | 29000     | 0.0           | -               |
| 3.6698  | 29050     | 0.0           | -               |
| 3.6761  | 29100     | 0.0           | -               |
| 3.6824  | 29150     | 0.0           | -               |
| 3.6887  | 29200     | 0.0           | -               |
| 3.6950  | 29250     | 0.0           | -               |
| 3.7014  | 29300     | 0.0           | -               |
| 3.7077  | 29350     | 0.0           | -               |
| 3.7140  | 29400     | 0.0           | -               |
| 3.7203  | 29450     | 0.0           | -               |
| 3.7266  | 29500     | 0.0           | -               |
| 3.7329  | 29550     | 0.0           | -               |
| 3.7393  | 29600     | 0.0           | -               |
| 3.7456  | 29650     | 0.0           | -               |
| 3.7519  | 29700     | 0.0           | -               |
| 3.7582  | 29750     | 0.0           | -               |
| 3.7645  | 29800     | 0.0           | -               |
| 3.7708  | 29850     | 0.0           | -               |
| 3.7772  | 29900     | 0.0           | -               |
| 3.7835  | 29950     | 0.0           | -               |
| 3.7898  | 30000     | 0.0           | -               |
| 3.7961  | 30050     | 0.0           | -               |
| 3.8024  | 30100     | 0.0           | -               |
| 3.8087  | 30150     | 0.0           | -               |
| 3.8151  | 30200     | 0.0           | -               |
| 3.8214  | 30250     | 0.0           | -               |
| 3.8277  | 30300     | 0.0           | -               |
| 3.8340  | 30350     | 0.0           | -               |
| 3.8403  | 30400     | 0.0           | -               |
| 3.8466  | 30450     | 0.0           | -               |
| 3.8530  | 30500     | 0.0           | -               |
| 3.8593  | 30550     | 0.0           | -               |
| 3.8656  | 30600     | 0.0           | -               |
| 3.8719  | 30650     | 0.0           | -               |
| 3.8782  | 30700     | 0.0           | -               |
| 3.8845  | 30750     | 0.0           | -               |
| 3.8909  | 30800     | 0.0           | -               |
| 3.8972  | 30850     | 0.0           | -               |
| 3.9035  | 30900     | 0.0           | -               |
| 3.9098  | 30950     | 0.0           | -               |
| 3.9161  | 31000     | 0.0           | -               |
| 3.9224  | 31050     | 0.0           | -               |
| 3.9288  | 31100     | 0.0           | -               |
| 3.9351  | 31150     | 0.0           | -               |
| 3.9414  | 31200     | 0.0           | -               |
| 3.9477  | 31250     | 0.0           | -               |
| 3.9540  | 31300     | 0.0           | -               |
| 3.9603  | 31350     | 0.0           | -               |
| 3.9666  | 31400     | 0.0           | -               |
| 3.9730  | 31450     | 0.0           | -               |
| 3.9793  | 31500     | 0.0           | -               |
| 3.9856  | 31550     | 0.0           | -               |
| 3.9919  | 31600     | 0.0           | -               |
| 3.9982  | 31650     | 0.0           | -               |
| 4.0     | 31664     | -             | 0.0117          |

* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.9.18
- SetFit: 1.0.3
- Sentence Transformers: 2.2.1
- Transformers: 4.32.1
- PyTorch: 1.10.0
- Datasets: 2.20.0
- Tokenizers: 0.13.3

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->