File size: 43,885 Bytes
136d3ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "5ea2cd46-5e4c-453c-bbef-69f3b3411765",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/user/home/dc.tavares/.conda/envs/ws2024/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
      "  from .autonotebook import tqdm as notebook_tqdm\n"
     ]
    }
   ],
   "source": [
    "import os\n",
    "import numpy as np\n",
    "\n",
    "# import transformers\n",
    "from transformers import (\n",
    "    AutoModelForSequenceClassification,\n",
    "    AutoTokenizer,\n",
    "    Trainer,\n",
    "    TrainingArguments,\n",
    ")\n",
    "from datasets import load_metric\n",
    "\n",
    "from dataset_loader import IntentDataset"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "dd7d77de-a96c-43da-973e-9185e596ecd5",
   "metadata": {},
   "outputs": [],
   "source": [
    "# transformers.logging.set_verbosity_info()\n",
    "# transformers.logging.set_verbosity_error() \n",
    "# We set the verbosity to error to avoid the annoying huggingface warnings \n",
    "# when loading models before training them. If you're having trouble getting things to work\n",
    "# maybe comment that line (setting the verbosity to info also may lead to interesting outputs!)\n",
    "# os.environ['TOKENIZERS_PARALLELISM'] = \"false\" # trainer (?) was complaining about parallel tokenization\n",
    "# os.environ[\"WANDB_DISABLED\"] = \"true\" # trainer was complaining about wandb"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "1d62015d-faa8-452f-a1bd-63da4f88b90f",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/user/home/dc.tavares/.conda/envs/ws2024/lib/python3.10/site-packages/huggingface_hub/file_download.py:1132: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.\n",
      "  warnings.warn(\n"
     ]
    }
   ],
   "source": [
    "model_checkpoint_name = 'roberta-base' # try 'bert-base-uncased', 'bert-base-cased', 'bert-large-uncased'\n",
    "dataset_name = 'twiz-data' # rename to your dataset dir\n",
    "tokenizer = AutoTokenizer.from_pretrained(model_checkpoint_name) # loads a tokenizer\n",
    "tokenizer.save_pretrained(\"tokenizer\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "0d97d9ef-7412-402e-92cb-cf4c666e2cdb",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Loaded Intent detection dataset. 5916 examples. (train). \n",
      "Loaded Intent detection dataset. 819 examples. (val). \n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Some weights of RobertaForSequenceClassification were not initialized from the model checkpoint at roberta-base and are newly initialized: ['classifier.dense.bias', 'classifier.dense.weight', 'classifier.out_proj.bias', 'classifier.out_proj.weight']\n",
      "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
     ]
    }
   ],
   "source": [
    "train_dataset = IntentDataset(dataset_name, tokenizer, 'train') # check twiz_dataset.py for dataset loading code\n",
    "val_dataset = IntentDataset(dataset_name, tokenizer, 'val')\n",
    "\n",
    "model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint_name, num_labels=len(train_dataset.all_intents)) # Loads the BERT model weights"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "14adcad7-37ea-480d-85f4-f69e2ea1d431",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "All data keys: dict_keys(['input_ids', 'attention_mask', 'label'])\n",
      "tensor([    0,  6715,    28,  7316,    77,   634,   143,  3270,    50,  2104,\n",
      "            4,  9427,     6,  1078,    78,   328,  1398,    16,   103,   335,\n",
      "           59, 26157,     8, 42446, 11182,   102,     4,    85,    34,    10,\n",
      "          204,     4,   398,   999,   691,     4,  1437,    85,    16,  2319,\n",
      "            7,   185,    59,  1718,   728,   479,    85,  4542,   204,     4,\n",
      "         3139,  9600,   672,    16, 18609,     4,  1437,   318,    42,    16,\n",
      "           45,  1341,    99,    47,    32,   546,    13,   224,     6,   213,\n",
      "          124,     4,   598,   535,     5,  3685,     6,    95,   224,     6,\n",
      "          311,  7075,     4,     2,     2, 12005,  7075,     2,     1,     1,\n",
      "            1,     1,     1,     1,     1,     1,     1,     1,     1,     1,\n",
      "            1,     1,     1,     1,     1,     1,     1,     1,     1,     1,\n",
      "            1,     1,     1,     1,     1,     1,     1,     1,     1,     1,\n",
      "            1,     1,     1,     1,     1,     1,     1,     1,     1,     1,\n",
      "            1,     1,     1,     1,     1,     1,     1,     1,     1,     1,\n",
      "            1,     1,     1,     1,     1,     1,     1,     1,     1,     1,\n",
      "            1,     1,     1,     1,     1,     1,     1,     1,     1,     1,\n",
      "            1,     1,     1,     1,     1,     1,     1,     1,     1,     1,\n",
      "            1,     1,     1,     1,     1,     1,     1,     1,     1,     1]) torch.Size([180])\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "(tensor(29), 'IngredientsConfirmationIntent')"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "inspect_index = 0\n",
    "print('All data keys:', train_dataset[inspect_index].keys())\n",
    "print(train_dataset[inspect_index]['input_ids'], train_dataset[inspect_index]['input_ids'].shape)\n",
    "# you can check the correspondence of a label by checking the all_intents attribute, as such:\n",
    "train_dataset[inspect_index]['label'], train_dataset.all_intents[train_dataset[inspect_index]['label']]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "efd44ee5-19fa-434b-b187-b2b219b0f472",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/tmp/ipykernel_432924/3219055009.py:1: FutureWarning: load_metric is deprecated and will be removed in the next major version of datasets. Use 'evaluate.load' instead, from the new library 🤗 Evaluate: https://huggingface.co/docs/evaluate\n",
      "  acc = load_metric('accuracy')\n",
      "/user/home/dc.tavares/.conda/envs/ws2024/lib/python3.10/site-packages/datasets/load.py:759: FutureWarning: The repository for accuracy contains custom code which must be executed to correctly load the metric. You can inspect the repository content at https://raw.githubusercontent.com/huggingface/datasets/2.19.1/metrics/accuracy/accuracy.py\n",
      "You can avoid this message in future by passing the argument `trust_remote_code=True`.\n",
      "Passing `trust_remote_code=True` will be mandatory to load this metric from the next major release of `datasets`.\n",
      "  warnings.warn(\n",
      "Using the latest cached version of the module from /user/home/dc.tavares/.cache/huggingface/modules/datasets_modules/metrics/accuracy/bbddc2dafac9b46b0aeeb39c145af710c55e03b223eae89dfe86388f40d9d157 (last modified on Wed May 18 17:06:59 2022) since it couldn't be found locally at accuracy, or remotely on the Hugging Face Hub.\n"
     ]
    }
   ],
   "source": [
    "acc = load_metric('accuracy')\n",
    "def compute_metrics(eval_pred):\n",
    "    logits, labels = eval_pred\n",
    "    predictions = np.argmax(logits, axis=-1)\n",
    "    accuracy = acc.compute(predictions=predictions, references=labels)\n",
    "    return accuracy\n",
    "\n",
    "def get_trainer(model):\n",
    "    return Trainer(\n",
    "        model=model,\n",
    "        args=training_args,\n",
    "        train_dataset=train_dataset,\n",
    "        eval_dataset=val_dataset,\n",
    "        compute_metrics=compute_metrics,\n",
    "    )\n",
    "\n",
    "training_args = TrainingArguments(\n",
    "    output_dir='roberta-based',\n",
    "    do_train=True,\n",
    "    do_eval=True,\n",
    "    evaluation_strategy='epoch',\n",
    "    save_strategy='epoch',\n",
    "    logging_strategy='epoch',\n",
    "    metric_for_best_model='accuracy',\n",
    "    learning_rate=2e-5,\n",
    "    num_train_epochs=5,\n",
    "    weight_decay=0.01,\n",
    "    per_device_train_batch_size=32,\n",
    "    per_device_eval_batch_size=32,\n",
    "    load_best_model_at_end=True,\n",
    "    disable_tqdm=False,\n",
    ")\n",
    "\n",
    "trainer = get_trainer(model)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "4246f805-195b-47dd-9216-9eb5a3a0bcac",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "\n",
       "    <div>\n",
       "      \n",
       "      <progress value='925' max='925' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
       "      [925/925 08:34, Epoch 5/5]\n",
       "    </div>\n",
       "    <table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       " <tr style=\"text-align: left;\">\n",
       "      <th>Epoch</th>\n",
       "      <th>Training Loss</th>\n",
       "      <th>Validation Loss</th>\n",
       "      <th>Accuracy</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <td>1</td>\n",
       "      <td>1.733200</td>\n",
       "      <td>1.017632</td>\n",
       "      <td>0.799756</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>2</td>\n",
       "      <td>0.676700</td>\n",
       "      <td>0.734118</td>\n",
       "      <td>0.829060</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>3</td>\n",
       "      <td>0.446900</td>\n",
       "      <td>0.668322</td>\n",
       "      <td>0.847375</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>4</td>\n",
       "      <td>0.343500</td>\n",
       "      <td>0.640882</td>\n",
       "      <td>0.852259</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>5</td>\n",
       "      <td>0.282900</td>\n",
       "      <td>0.641061</td>\n",
       "      <td>0.857143</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table><p>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "TrainOutput(global_step=925, training_loss=0.6966540857263513, metrics={'train_runtime': 515.0261, 'train_samples_per_second': 57.434, 'train_steps_per_second': 1.796, 'total_flos': 2736984690806400.0, 'train_loss': 0.6966540857263513, 'epoch': 5.0})"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "trainer.train()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "2838862d-fd04-46d6-a3a3-614bd09edb99",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Loaded Intent detection dataset. 842 examples. (test). \n"
     ]
    },
    {
     "data": {
      "text/html": [
       "\n",
       "    <div>\n",
       "      \n",
       "      <progress value='27' max='27' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
       "      [27/27 00:04]\n",
       "    </div>\n",
       "    "
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "ename": "ConnectionError",
     "evalue": "(MaxRetryError('HTTPSConnectionPool(host=\\'huggingface.co\\', port=443): Max retries exceeded with url: /api/repos/create (Caused by NameResolutionError(\"<urllib3.connection.HTTPSConnection object at 0x7fd2023513c0>: Failed to resolve \\'huggingface.co\\' ([Errno -3] Temporary failure in name resolution)\"))'), '(Request ID: 893f7cae-38f8-4513-ba1d-a7c8dd3db7c8)')",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mgaierror\u001b[0m                                  Traceback (most recent call last)",
      "File \u001b[0;32m~/.conda/envs/ws2024/lib/python3.10/site-packages/urllib3/connection.py:198\u001b[0m, in \u001b[0;36mHTTPConnection._new_conn\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m    197\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 198\u001b[0m     sock \u001b[38;5;241m=\u001b[39m \u001b[43mconnection\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcreate_connection\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    199\u001b[0m \u001b[43m        \u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_dns_host\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mport\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    200\u001b[0m \u001b[43m        \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtimeout\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    201\u001b[0m \u001b[43m        \u001b[49m\u001b[43msource_address\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msource_address\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    202\u001b[0m \u001b[43m        \u001b[49m\u001b[43msocket_options\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msocket_options\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    203\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    204\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m socket\u001b[38;5;241m.\u001b[39mgaierror \u001b[38;5;28;01mas\u001b[39;00m e:\n",
      "File \u001b[0;32m~/.conda/envs/ws2024/lib/python3.10/site-packages/urllib3/util/connection.py:60\u001b[0m, in \u001b[0;36mcreate_connection\u001b[0;34m(address, timeout, source_address, socket_options)\u001b[0m\n\u001b[1;32m     58\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m LocationParseError(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mhost\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m, label empty or too long\u001b[39m\u001b[38;5;124m\"\u001b[39m) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m---> 60\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m res \u001b[38;5;129;01min\u001b[39;00m \u001b[43msocket\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgetaddrinfo\u001b[49m\u001b[43m(\u001b[49m\u001b[43mhost\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mport\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfamily\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msocket\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mSOCK_STREAM\u001b[49m\u001b[43m)\u001b[49m:\n\u001b[1;32m     61\u001b[0m     af, socktype, proto, canonname, sa \u001b[38;5;241m=\u001b[39m res\n",
      "File \u001b[0;32m~/.conda/envs/ws2024/lib/python3.10/socket.py:955\u001b[0m, in \u001b[0;36mgetaddrinfo\u001b[0;34m(host, port, family, type, proto, flags)\u001b[0m\n\u001b[1;32m    954\u001b[0m addrlist \u001b[38;5;241m=\u001b[39m []\n\u001b[0;32m--> 955\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m res \u001b[38;5;129;01min\u001b[39;00m \u001b[43m_socket\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgetaddrinfo\u001b[49m\u001b[43m(\u001b[49m\u001b[43mhost\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mport\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfamily\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mtype\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mproto\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mflags\u001b[49m\u001b[43m)\u001b[49m:\n\u001b[1;32m    956\u001b[0m     af, socktype, proto, canonname, sa \u001b[38;5;241m=\u001b[39m res\n",
      "\u001b[0;31mgaierror\u001b[0m: [Errno -3] Temporary failure in name resolution",
      "\nThe above exception was the direct cause of the following exception:\n",
      "\u001b[0;31mNameResolutionError\u001b[0m                       Traceback (most recent call last)",
      "File \u001b[0;32m~/.conda/envs/ws2024/lib/python3.10/site-packages/urllib3/connectionpool.py:793\u001b[0m, in \u001b[0;36mHTTPConnectionPool.urlopen\u001b[0;34m(self, method, url, body, headers, retries, redirect, assert_same_host, timeout, pool_timeout, release_conn, chunked, body_pos, preload_content, decode_content, **response_kw)\u001b[0m\n\u001b[1;32m    792\u001b[0m \u001b[38;5;66;03m# Make the request on the HTTPConnection object\u001b[39;00m\n\u001b[0;32m--> 793\u001b[0m response \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_make_request\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    794\u001b[0m \u001b[43m    \u001b[49m\u001b[43mconn\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    795\u001b[0m \u001b[43m    \u001b[49m\u001b[43mmethod\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    796\u001b[0m \u001b[43m    \u001b[49m\u001b[43murl\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    797\u001b[0m \u001b[43m    \u001b[49m\u001b[43mtimeout\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtimeout_obj\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    798\u001b[0m \u001b[43m    \u001b[49m\u001b[43mbody\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mbody\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    799\u001b[0m \u001b[43m    \u001b[49m\u001b[43mheaders\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mheaders\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    800\u001b[0m \u001b[43m    \u001b[49m\u001b[43mchunked\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mchunked\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    801\u001b[0m \u001b[43m    \u001b[49m\u001b[43mretries\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mretries\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    802\u001b[0m \u001b[43m    \u001b[49m\u001b[43mresponse_conn\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mresponse_conn\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    803\u001b[0m \u001b[43m    \u001b[49m\u001b[43mpreload_content\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mpreload_content\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    804\u001b[0m \u001b[43m    \u001b[49m\u001b[43mdecode_content\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdecode_content\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    805\u001b[0m \u001b[43m    \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mresponse_kw\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    806\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    808\u001b[0m \u001b[38;5;66;03m# Everything went great!\u001b[39;00m\n",
      "File \u001b[0;32m~/.conda/envs/ws2024/lib/python3.10/site-packages/urllib3/connectionpool.py:491\u001b[0m, in \u001b[0;36mHTTPConnectionPool._make_request\u001b[0;34m(self, conn, method, url, body, headers, retries, timeout, chunked, response_conn, preload_content, decode_content, enforce_content_length)\u001b[0m\n\u001b[1;32m    490\u001b[0m         new_e \u001b[38;5;241m=\u001b[39m _wrap_proxy_error(new_e, conn\u001b[38;5;241m.\u001b[39mproxy\u001b[38;5;241m.\u001b[39mscheme)\n\u001b[0;32m--> 491\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m new_e\n\u001b[1;32m    493\u001b[0m \u001b[38;5;66;03m# conn.request() calls http.client.*.request, not the method in\u001b[39;00m\n\u001b[1;32m    494\u001b[0m \u001b[38;5;66;03m# urllib3.request. It also calls makefile (recv) on the socket.\u001b[39;00m\n",
      "File \u001b[0;32m~/.conda/envs/ws2024/lib/python3.10/site-packages/urllib3/connectionpool.py:467\u001b[0m, in \u001b[0;36mHTTPConnectionPool._make_request\u001b[0;34m(self, conn, method, url, body, headers, retries, timeout, chunked, response_conn, preload_content, decode_content, enforce_content_length)\u001b[0m\n\u001b[1;32m    466\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 467\u001b[0m     \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_validate_conn\u001b[49m\u001b[43m(\u001b[49m\u001b[43mconn\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    468\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m (SocketTimeout, BaseSSLError) \u001b[38;5;28;01mas\u001b[39;00m e:\n",
      "File \u001b[0;32m~/.conda/envs/ws2024/lib/python3.10/site-packages/urllib3/connectionpool.py:1099\u001b[0m, in \u001b[0;36mHTTPSConnectionPool._validate_conn\u001b[0;34m(self, conn)\u001b[0m\n\u001b[1;32m   1098\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m conn\u001b[38;5;241m.\u001b[39mis_closed:\n\u001b[0;32m-> 1099\u001b[0m     \u001b[43mconn\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconnect\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   1101\u001b[0m \u001b[38;5;66;03m# TODO revise this, see https://github.com/urllib3/urllib3/issues/2791\u001b[39;00m\n",
      "File \u001b[0;32m~/.conda/envs/ws2024/lib/python3.10/site-packages/urllib3/connection.py:616\u001b[0m, in \u001b[0;36mHTTPSConnection.connect\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m    615\u001b[0m sock: socket\u001b[38;5;241m.\u001b[39msocket \u001b[38;5;241m|\u001b[39m ssl\u001b[38;5;241m.\u001b[39mSSLSocket\n\u001b[0;32m--> 616\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msock \u001b[38;5;241m=\u001b[39m sock \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_new_conn\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    617\u001b[0m server_hostname: \u001b[38;5;28mstr\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhost\n",
      "File \u001b[0;32m~/.conda/envs/ws2024/lib/python3.10/site-packages/urllib3/connection.py:205\u001b[0m, in \u001b[0;36mHTTPConnection._new_conn\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m    204\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m socket\u001b[38;5;241m.\u001b[39mgaierror \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m--> 205\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m NameResolutionError(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhost, \u001b[38;5;28mself\u001b[39m, e) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01me\u001b[39;00m\n\u001b[1;32m    206\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m SocketTimeout \u001b[38;5;28;01mas\u001b[39;00m e:\n",
      "\u001b[0;31mNameResolutionError\u001b[0m: <urllib3.connection.HTTPSConnection object at 0x7fd2023513c0>: Failed to resolve 'huggingface.co' ([Errno -3] Temporary failure in name resolution)",
      "\nThe above exception was the direct cause of the following exception:\n",
      "\u001b[0;31mMaxRetryError\u001b[0m                             Traceback (most recent call last)",
      "File \u001b[0;32m~/.conda/envs/ws2024/lib/python3.10/site-packages/requests/adapters.py:486\u001b[0m, in \u001b[0;36mHTTPAdapter.send\u001b[0;34m(self, request, stream, timeout, verify, cert, proxies)\u001b[0m\n\u001b[1;32m    485\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 486\u001b[0m     resp \u001b[38;5;241m=\u001b[39m \u001b[43mconn\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43murlopen\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    487\u001b[0m \u001b[43m        \u001b[49m\u001b[43mmethod\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrequest\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmethod\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    488\u001b[0m \u001b[43m        \u001b[49m\u001b[43murl\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43murl\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    489\u001b[0m \u001b[43m        \u001b[49m\u001b[43mbody\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrequest\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbody\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    490\u001b[0m \u001b[43m        \u001b[49m\u001b[43mheaders\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrequest\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mheaders\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    491\u001b[0m \u001b[43m        \u001b[49m\u001b[43mredirect\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m    492\u001b[0m \u001b[43m        \u001b[49m\u001b[43massert_same_host\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m    493\u001b[0m \u001b[43m        \u001b[49m\u001b[43mpreload_content\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m    494\u001b[0m \u001b[43m        \u001b[49m\u001b[43mdecode_content\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m    495\u001b[0m \u001b[43m        \u001b[49m\u001b[43mretries\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmax_retries\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    496\u001b[0m \u001b[43m        \u001b[49m\u001b[43mtimeout\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtimeout\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    497\u001b[0m \u001b[43m        \u001b[49m\u001b[43mchunked\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mchunked\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    498\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    500\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m (ProtocolError, \u001b[38;5;167;01mOSError\u001b[39;00m) \u001b[38;5;28;01mas\u001b[39;00m err:\n",
      "File \u001b[0;32m~/.conda/envs/ws2024/lib/python3.10/site-packages/urllib3/connectionpool.py:847\u001b[0m, in \u001b[0;36mHTTPConnectionPool.urlopen\u001b[0;34m(self, method, url, body, headers, retries, redirect, assert_same_host, timeout, pool_timeout, release_conn, chunked, body_pos, preload_content, decode_content, **response_kw)\u001b[0m\n\u001b[1;32m    845\u001b[0m     new_e \u001b[38;5;241m=\u001b[39m ProtocolError(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mConnection aborted.\u001b[39m\u001b[38;5;124m\"\u001b[39m, new_e)\n\u001b[0;32m--> 847\u001b[0m retries \u001b[38;5;241m=\u001b[39m \u001b[43mretries\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mincrement\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    848\u001b[0m \u001b[43m    \u001b[49m\u001b[43mmethod\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43murl\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43merror\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnew_e\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m_pool\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m_stacktrace\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msys\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mexc_info\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m2\u001b[39;49m\u001b[43m]\u001b[49m\n\u001b[1;32m    849\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    850\u001b[0m retries\u001b[38;5;241m.\u001b[39msleep()\n",
      "File \u001b[0;32m~/.conda/envs/ws2024/lib/python3.10/site-packages/urllib3/util/retry.py:515\u001b[0m, in \u001b[0;36mRetry.increment\u001b[0;34m(self, method, url, response, error, _pool, _stacktrace)\u001b[0m\n\u001b[1;32m    514\u001b[0m     reason \u001b[38;5;241m=\u001b[39m error \u001b[38;5;129;01mor\u001b[39;00m ResponseError(cause)\n\u001b[0;32m--> 515\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m MaxRetryError(_pool, url, reason) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mreason\u001b[39;00m  \u001b[38;5;66;03m# type: ignore[arg-type]\u001b[39;00m\n\u001b[1;32m    517\u001b[0m log\u001b[38;5;241m.\u001b[39mdebug(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mIncremented Retry for (url=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m%s\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m): \u001b[39m\u001b[38;5;132;01m%r\u001b[39;00m\u001b[38;5;124m\"\u001b[39m, url, new_retry)\n",
      "\u001b[0;31mMaxRetryError\u001b[0m: HTTPSConnectionPool(host='huggingface.co', port=443): Max retries exceeded with url: /api/repos/create (Caused by NameResolutionError(\"<urllib3.connection.HTTPSConnection object at 0x7fd2023513c0>: Failed to resolve 'huggingface.co' ([Errno -3] Temporary failure in name resolution)\"))",
      "\nDuring handling of the above exception, another exception occurred:\n",
      "\u001b[0;31mConnectionError\u001b[0m                           Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[9], line 7\u001b[0m\n\u001b[1;32m      4\u001b[0m trainer \u001b[38;5;241m=\u001b[39m get_trainer(model)\n\u001b[1;32m      5\u001b[0m trainer\u001b[38;5;241m.\u001b[39mevaluate(eval_dataset\u001b[38;5;241m=\u001b[39mtest_dataset)\n\u001b[0;32m----> 7\u001b[0m \u001b[43mtrainer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpush_to_hub\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m~/.conda/envs/ws2024/lib/python3.10/site-packages/transformers/trainer.py:4072\u001b[0m, in \u001b[0;36mTrainer.push_to_hub\u001b[0;34m(self, commit_message, blocking, token, **kwargs)\u001b[0m\n\u001b[1;32m   4070\u001b[0m \u001b[38;5;66;03m# In case the user calls this method with args.push_to_hub = False\u001b[39;00m\n\u001b[1;32m   4071\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhub_model_id \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m-> 4072\u001b[0m     \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minit_hf_repo\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtoken\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtoken\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   4074\u001b[0m \u001b[38;5;66;03m# Needs to be executed on all processes for TPU training, but will only save on the processed determined by\u001b[39;00m\n\u001b[1;32m   4075\u001b[0m \u001b[38;5;66;03m# self.args.should_save.\u001b[39;00m\n\u001b[1;32m   4076\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msave_model(_internal_call\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\n",
      "File \u001b[0;32m~/.conda/envs/ws2024/lib/python3.10/site-packages/transformers/trainer.py:3896\u001b[0m, in \u001b[0;36mTrainer.init_hf_repo\u001b[0;34m(self, token)\u001b[0m\n\u001b[1;32m   3893\u001b[0m     repo_name \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39margs\u001b[38;5;241m.\u001b[39mhub_model_id\n\u001b[1;32m   3895\u001b[0m token \u001b[38;5;241m=\u001b[39m token \u001b[38;5;28;01mif\u001b[39;00m token \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39margs\u001b[38;5;241m.\u001b[39mhub_token\n\u001b[0;32m-> 3896\u001b[0m repo_url \u001b[38;5;241m=\u001b[39m \u001b[43mcreate_repo\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrepo_name\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtoken\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtoken\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mprivate\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43margs\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mhub_private_repo\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mexist_ok\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m)\u001b[49m\n\u001b[1;32m   3897\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhub_model_id \u001b[38;5;241m=\u001b[39m repo_url\u001b[38;5;241m.\u001b[39mrepo_id\n\u001b[1;32m   3898\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mpush_in_progress \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n",
      "File \u001b[0;32m~/.conda/envs/ws2024/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py:114\u001b[0m, in \u001b[0;36mvalidate_hf_hub_args.<locals>._inner_fn\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m    111\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m check_use_auth_token:\n\u001b[1;32m    112\u001b[0m     kwargs \u001b[38;5;241m=\u001b[39m smoothly_deprecate_use_auth_token(fn_name\u001b[38;5;241m=\u001b[39mfn\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m, has_token\u001b[38;5;241m=\u001b[39mhas_token, kwargs\u001b[38;5;241m=\u001b[39mkwargs)\n\u001b[0;32m--> 114\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m~/.conda/envs/ws2024/lib/python3.10/site-packages/huggingface_hub/hf_api.py:3243\u001b[0m, in \u001b[0;36mHfApi.create_repo\u001b[0;34m(self, repo_id, token, private, repo_type, exist_ok, space_sdk, space_hardware, space_storage, space_sleep_time, space_secrets, space_variables)\u001b[0m\n\u001b[1;32m   3240\u001b[0m headers \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_build_hf_headers(token\u001b[38;5;241m=\u001b[39mtoken)\n\u001b[1;32m   3242\u001b[0m \u001b[38;5;28;01mwhile\u001b[39;00m \u001b[38;5;28;01mTrue\u001b[39;00m:\n\u001b[0;32m-> 3243\u001b[0m     r \u001b[38;5;241m=\u001b[39m \u001b[43mget_session\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpost\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpath\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mheaders\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mheaders\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mjson\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mjson\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   3244\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m r\u001b[38;5;241m.\u001b[39mstatus_code \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m409\u001b[39m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCannot create repo: another conflicting operation is in progress\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01min\u001b[39;00m r\u001b[38;5;241m.\u001b[39mtext:\n\u001b[1;32m   3245\u001b[0m         \u001b[38;5;66;03m# Since https://github.com/huggingface/moon-landing/pull/7272 (private repo), it is not possible to\u001b[39;00m\n\u001b[1;32m   3246\u001b[0m         \u001b[38;5;66;03m# concurrently create repos on the Hub for a same user. This is rarely an issue, except when running\u001b[39;00m\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m   3249\u001b[0m         \u001b[38;5;66;03m# dependent libraries.\u001b[39;00m\n\u001b[1;32m   3250\u001b[0m         \u001b[38;5;66;03m# NOTE: If a fix is implemented server-side, we should be able to remove this retry mechanism.\u001b[39;00m\n\u001b[1;32m   3251\u001b[0m         logger\u001b[38;5;241m.\u001b[39mdebug(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCreate repo failed due to a concurrency issue. Retrying...\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
      "File \u001b[0;32m~/.conda/envs/ws2024/lib/python3.10/site-packages/requests/sessions.py:637\u001b[0m, in \u001b[0;36mSession.post\u001b[0;34m(self, url, data, json, **kwargs)\u001b[0m\n\u001b[1;32m    626\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mpost\u001b[39m(\u001b[38;5;28mself\u001b[39m, url, data\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, json\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[1;32m    627\u001b[0m \u001b[38;5;250m    \u001b[39m\u001b[38;5;124mr\u001b[39m\u001b[38;5;124;03m\"\"\"Sends a POST request. Returns :class:`Response` object.\u001b[39;00m\n\u001b[1;32m    628\u001b[0m \n\u001b[1;32m    629\u001b[0m \u001b[38;5;124;03m    :param url: URL for the new :class:`Request` object.\u001b[39;00m\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m    634\u001b[0m \u001b[38;5;124;03m    :rtype: requests.Response\u001b[39;00m\n\u001b[1;32m    635\u001b[0m \u001b[38;5;124;03m    \"\"\"\u001b[39;00m\n\u001b[0;32m--> 637\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrequest\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mPOST\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43murl\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdata\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mjson\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mjson\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m~/.conda/envs/ws2024/lib/python3.10/site-packages/requests/sessions.py:589\u001b[0m, in \u001b[0;36mSession.request\u001b[0;34m(self, method, url, params, data, headers, cookies, files, auth, timeout, allow_redirects, proxies, hooks, stream, verify, cert, json)\u001b[0m\n\u001b[1;32m    584\u001b[0m send_kwargs \u001b[38;5;241m=\u001b[39m {\n\u001b[1;32m    585\u001b[0m     \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtimeout\u001b[39m\u001b[38;5;124m\"\u001b[39m: timeout,\n\u001b[1;32m    586\u001b[0m     \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mallow_redirects\u001b[39m\u001b[38;5;124m\"\u001b[39m: allow_redirects,\n\u001b[1;32m    587\u001b[0m }\n\u001b[1;32m    588\u001b[0m send_kwargs\u001b[38;5;241m.\u001b[39mupdate(settings)\n\u001b[0;32m--> 589\u001b[0m resp \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msend\u001b[49m\u001b[43m(\u001b[49m\u001b[43mprep\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43msend_kwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    591\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m resp\n",
      "File \u001b[0;32m~/.conda/envs/ws2024/lib/python3.10/site-packages/requests/sessions.py:703\u001b[0m, in \u001b[0;36mSession.send\u001b[0;34m(self, request, **kwargs)\u001b[0m\n\u001b[1;32m    700\u001b[0m start \u001b[38;5;241m=\u001b[39m preferred_clock()\n\u001b[1;32m    702\u001b[0m \u001b[38;5;66;03m# Send the request\u001b[39;00m\n\u001b[0;32m--> 703\u001b[0m r \u001b[38;5;241m=\u001b[39m \u001b[43madapter\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msend\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrequest\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    705\u001b[0m \u001b[38;5;66;03m# Total elapsed time of the request (approximately)\u001b[39;00m\n\u001b[1;32m    706\u001b[0m elapsed \u001b[38;5;241m=\u001b[39m preferred_clock() \u001b[38;5;241m-\u001b[39m start\n",
      "File \u001b[0;32m~/.conda/envs/ws2024/lib/python3.10/site-packages/huggingface_hub/utils/_http.py:66\u001b[0m, in \u001b[0;36mUniqueRequestIdAdapter.send\u001b[0;34m(self, request, *args, **kwargs)\u001b[0m\n\u001b[1;32m     64\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Catch any RequestException to append request id to the error message for debugging.\"\"\"\u001b[39;00m\n\u001b[1;32m     65\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m---> 66\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msend\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrequest\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m     67\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m requests\u001b[38;5;241m.\u001b[39mRequestException \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m     68\u001b[0m     request_id \u001b[38;5;241m=\u001b[39m request\u001b[38;5;241m.\u001b[39mheaders\u001b[38;5;241m.\u001b[39mget(X_AMZN_TRACE_ID)\n",
      "File \u001b[0;32m~/.conda/envs/ws2024/lib/python3.10/site-packages/requests/adapters.py:519\u001b[0m, in \u001b[0;36mHTTPAdapter.send\u001b[0;34m(self, request, stream, timeout, verify, cert, proxies)\u001b[0m\n\u001b[1;32m    515\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(e\u001b[38;5;241m.\u001b[39mreason, _SSLError):\n\u001b[1;32m    516\u001b[0m         \u001b[38;5;66;03m# This branch is for urllib3 v1.22 and later.\u001b[39;00m\n\u001b[1;32m    517\u001b[0m         \u001b[38;5;28;01mraise\u001b[39;00m SSLError(e, request\u001b[38;5;241m=\u001b[39mrequest)\n\u001b[0;32m--> 519\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mConnectionError\u001b[39;00m(e, request\u001b[38;5;241m=\u001b[39mrequest)\n\u001b[1;32m    521\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m ClosedPoolError \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m    522\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mConnectionError\u001b[39;00m(e, request\u001b[38;5;241m=\u001b[39mrequest)\n",
      "\u001b[0;31mConnectionError\u001b[0m: (MaxRetryError('HTTPSConnectionPool(host=\\'huggingface.co\\', port=443): Max retries exceeded with url: /api/repos/create (Caused by NameResolutionError(\"<urllib3.connection.HTTPSConnection object at 0x7fd2023513c0>: Failed to resolve \\'huggingface.co\\' ([Errno -3] Temporary failure in name resolution)\"))'), '(Request ID: 893f7cae-38f8-4513-ba1d-a7c8dd3db7c8)')"
     ]
    }
   ],
   "source": [
    "# run the next cell with the next line uncommented and fill your checkpoint directory to evaluate the model\n",
    "# model = AutoModelForSequenceClassification.from_pretrained('./your-checkpoint-directory').eval()\n",
    "test_dataset = IntentDataset(dataset_name, tokenizer, 'test')\n",
    "trainer = get_trainer(model)\n",
    "trainer.evaluate(eval_dataset=test_dataset)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "ws2024",
   "language": "python",
   "name": "ws2024"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.14"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}