File size: 9,094 Bytes
a8b0e92 19a4bf3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
import torch
import torch.nn as nn
import numpy as np
import torchaudio
import soundfile as sf
from torch import Tensor
# Define your device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Define constants based on the loaded checkpoint
e_dim = 512 # Update with the correct embedding dimension based on your model
n_classes = 2 # Number of language classes, based on your requirement
look_back1 = 30
look_back2 = 60
lan2id = {'MA': 0, 'PU': 1}
# Function to preprocess input data
def Get_data(X):
if isinstance(X, torch.Tensor):
X = X.cpu().numpy()
mu = X.mean(axis=0)
std = X.std(axis=0)
np.place(std, std == 0, 1)
X = (X - mu) / std
Xdata1 = []
Xdata2 = []
for i in range(0, len(X)-look_back1, 1):
a = X[i:(i+look_back1), :]
Xdata1.append(a)
Xdata1 = np.array(Xdata1)
for i in range(0, len(X)-look_back2, 2):
b = X[i+1:(i+look_back2):3, :]
Xdata2.append(b)
Xdata2 = np.array(Xdata2)
return Xdata1, Xdata2
class LSTMNet(nn.Module):
def __init__(self):
super(LSTMNet, self).__init__()
self.lstm1 = nn.LSTM(1024, 512, bidirectional=True)
self.lstm2 = nn.LSTM(1024, 256, bidirectional=True)
self.fc_ha = nn.Linear(e_dim, 256)
self.fc_1 = nn.Linear(256, 1)
self.softmax = nn.Softmax(dim=1)
def forward(self, x):
x1, _ = self.lstm1(x)
x2, _ = self.lstm2(x1)
ht = x2[-1]
ht = torch.unsqueeze(ht, 0)
ha = torch.tanh(self.fc_ha(ht))
alp = self.fc_1(ha)
al = self.softmax(alp)
T = list(ht.shape)[1]
batch_size = list(ht.shape)[0]
D = list(ht.shape)[2]
c = torch.bmm(al.view(batch_size, 1, T), ht.view(batch_size, T, D))
c = torch.squeeze(c, 0)
return c
class CCSL_Net(nn.Module):
def __init__(self, model1, model2):
super(CCSL_Net, self).__init__()
self.model1 = model1
self.model2 = model2
self.att1 = nn.Linear(e_dim, 256)
self.att2 = nn.Linear(256, 1)
self.softmax = nn.Softmax(dim=1)
self.lang_classifier = nn.Linear(e_dim, n_classes, bias=False)
def forward(self, x1, x2):
e1 = self.model1(x1)
e2 = self.model2(x2)
ht_e = torch.cat((e1, e2), dim=0)
ht_e = torch.unsqueeze(ht_e, 0)
ha_e = torch.tanh(self.att1(ht_e))
alp = torch.tanh(self.att2(ha_e))
al = self.softmax(alp)
Tb = list(ht_e.shape)[1]
batch_size = list(ht_e.shape)[0]
D = list(ht_e.shape)[2]
u_vec = torch.bmm(al.view(batch_size, 1, Tb), ht_e.view(batch_size, Tb, D))
u_vec = torch.squeeze(u_vec, 0)
lan_prim = self.lang_classifier(u_vec)
return lan_prim
class DID_Model(nn.Module):
def __init__(self):
super(DID_Model, self).__init__()
self.model1 = LSTMNet()
self.model2 = LSTMNet()
self.ccslnet = CCSL_Net(self.model1, self.model2)
self.wave2vec_model_path = ""
def forward(self, x1, x2):
output = self.ccslnet(x1, x2)
return output
def load_weights(self, checkpoint_path, wave2vec_model_path):
checkpoint = torch.load(checkpoint_path, map_location=device)
self.wave2vec_model_path = wave2vec_model_path
# Load weights for model1
self.model1.lstm1.load_state_dict({
'weight_ih_l0': checkpoint['model1.lstm1.weight_ih_l0'],
'weight_hh_l0': checkpoint['model1.lstm1.weight_hh_l0'],
'bias_ih_l0': checkpoint['model1.lstm1.bias_ih_l0'],
'bias_hh_l0': checkpoint['model1.lstm1.bias_hh_l0'],
'weight_ih_l0_reverse': checkpoint['model1.lstm1.weight_ih_l0_reverse'],
'weight_hh_l0_reverse': checkpoint['model1.lstm1.weight_hh_l0_reverse'],
'bias_ih_l0_reverse': checkpoint['model1.lstm1.bias_ih_l0_reverse'],
'bias_hh_l0_reverse': checkpoint['model1.lstm1.bias_hh_l0_reverse']
})
self.model1.lstm2.load_state_dict({
'weight_ih_l0': checkpoint['model1.lstm2.weight_ih_l0'],
'weight_hh_l0': checkpoint['model1.lstm2.weight_hh_l0'],
'bias_ih_l0': checkpoint['model1.lstm2.bias_ih_l0'],
'bias_hh_l0': checkpoint['model1.lstm2.bias_hh_l0'],
'weight_ih_l0_reverse': checkpoint['model1.lstm2.weight_ih_l0_reverse'],
'weight_hh_l0_reverse': checkpoint['model1.lstm2.weight_hh_l0_reverse'],
'bias_ih_l0_reverse': checkpoint['model1.lstm2.bias_ih_l0_reverse'],
'bias_hh_l0_reverse': checkpoint['model1.lstm2.bias_hh_l0_reverse']
})
self.model1.fc_ha.load_state_dict({
'weight': checkpoint['model1.fc_ha.weight'],
'bias': checkpoint['model1.fc_ha.bias']
})
self.model1.fc_1.load_state_dict({
'weight': checkpoint['model1.fc_1.weight'],
'bias': checkpoint['model1.fc_1.bias']
})
# Load weights for model2
self.model2.lstm1.load_state_dict({
'weight_ih_l0': checkpoint['model2.lstm1.weight_ih_l0'],
'weight_hh_l0': checkpoint['model2.lstm1.weight_hh_l0'],
'bias_ih_l0': checkpoint['model2.lstm1.bias_ih_l0'],
'bias_hh_l0': checkpoint['model2.lstm1.bias_hh_l0'],
'weight_ih_l0_reverse': checkpoint['model2.lstm1.weight_ih_l0_reverse'],
'weight_hh_l0_reverse': checkpoint['model2.lstm1.weight_hh_l0_reverse'],
'bias_ih_l0_reverse': checkpoint['model2.lstm1.bias_ih_l0_reverse'],
'bias_hh_l0_reverse': checkpoint['model2.lstm1.bias_hh_l0_reverse']
})
self.model2.lstm2.load_state_dict({
'weight_ih_l0': checkpoint['model2.lstm2.weight_ih_l0'],
'weight_hh_l0': checkpoint['model2.lstm2.weight_hh_l0'],
'bias_ih_l0': checkpoint['model2.lstm2.bias_ih_l0'],
'bias_hh_l0': checkpoint['model2.lstm2.bias_hh_l0'],
'weight_ih_l0_reverse': checkpoint['model2.lstm2.weight_ih_l0_reverse'],
'weight_hh_l0_reverse': checkpoint['model2.lstm2.weight_hh_l0_reverse'],
'bias_ih_l0_reverse': checkpoint['model2.lstm2.bias_ih_l0_reverse'],
'bias_hh_l0_reverse': checkpoint['model2.lstm2.bias_hh_l0_reverse']
})
self.model2.fc_ha.load_state_dict({
'weight': checkpoint['model2.fc_ha.weight'],
'bias': checkpoint['model2.fc_ha.bias']
})
self.model2.fc_1.load_state_dict({
'weight': checkpoint['model2.fc_1.weight'],
'bias': checkpoint['model2.fc_1.bias']
})
# Load attention weights
self.ccslnet.att1.load_state_dict({
'weight': checkpoint['att1.weight'],
'bias': checkpoint['att1.bias']
})
self.ccslnet.att2.load_state_dict({
'weight': checkpoint['att2.weight'],
'bias': checkpoint['att2.bias']
})
# Load language classifier weights
self.ccslnet.lang_classifier.load_state_dict({
'weight': checkpoint['lang_classifier.weight']
})
print("Weights loaded successfully!")
print("Dialect Identification Model loaded!")
def predict_dialect(self, audio_path):
wave2vec_model_path = self.wave2vec_model_path
input_features = self.extract_wav2vec_features(audio_path, wave2vec_model_path)
X1, X2 = Get_data(input_features)
X1 = np.swapaxes(X1, 0, 1)
X2 = np.swapaxes(X2, 0, 1)
x1 = torch.from_numpy(X1).to(device)
x2 = torch.from_numpy(X2).to(device)
# Pass inputs through the model
with torch.no_grad():
output = self.forward(x1, x2)
predicted_value = output.argmax().cpu().item()
# Convert predicted value to dialect
dialect = next(key for key, value in lan2id.items() if value == predicted_value)
return dialect
def extract_wav2vec_features(self, audio_path, wave2vec_model_path):
wave2vec2_bundle = torchaudio.pipelines.WAV2VEC2_ASR_LARGE_960H
wave2vec2_model = wave2vec2_bundle.get_model()
# Load the state dictionary from the given path
wave2vec2_model.load_state_dict(torch.load(wave2vec_model_path, map_location=device))
wave2vec2_model = wave2vec2_model.to(device)
wave2vec2_model.eval()
print("Wav2Vec 2.0 model loaded!")
print(f"\n\nLoading audio from {audio_path}.")
X, sample_rate = sf.read(audio_path)
waveform = Tensor(X)
waveform = waveform.unsqueeze(0)
if sample_rate != wave2vec2_bundle.sample_rate:
waveform = torchaudio.functional.resample(waveform, sample_rate, wave2vec2_bundle.sample_rate)
waveform = waveform.squeeze(-1)
with torch.inference_mode():
features, _ = wave2vec2_model.extract_features(waveform)
input_features = torch.squeeze(features[2])
return input_features |