File size: 8,626 Bytes
9f90da5
 
 
 
 
 
770dd41
d7b1af6
770dd41
9f90da5
e170aa7
9f90da5
 
 
41caeee
 
 
 
03d27b8
 
9f90da5
 
 
 
 
 
 
770dd41
 
9f90da5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4bab8e
 
 
 
 
9f90da5
 
 
 
a4bab8e
 
 
 
9f90da5
a4bab8e
 
9f90da5
a4bab8e
9f90da5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4bab8e
 
 
 
9f90da5
a4bab8e
9f90da5
a4bab8e
 
 
 
 
 
 
 
9f90da5
 
 
a4bab8e
9f90da5
 
 
 
a4bab8e
9f90da5
 
a4bab8e
9f90da5
a4bab8e
 
 
9f90da5
a4bab8e
 
 
9f90da5
 
 
 
 
 
 
 
 
 
 
 
 
41caeee
9f90da5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
---
license: cc-by-nc-4.0
language:
- de
base_model:
- HKUSTAudio/Llasa-1B-Multilingual
widget:
  - src: examples/no_speaker_example.wav

---
<img src="https://huggingface.co/MultiLlasa/Llasa-1B-Multilingual-German/resolve/main/cover.webp" alt="Llasa German Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>


# Llasa-1B-Multilingual-German
<a target="_blank" href="https://huggingface.co/spaces/SebastianBodza/llasa-1b-tts-german">
  <img src="https://huggingface.co/datasets/huggingface/badges/raw/main/open-in-hf-spaces-sm.svg" alt="Open in HuggingFace"/>
</a>

<Gallery />


> This model was trained on top of [HKUSTAudio/Llasa-1B-Multilingual](https://huggingface.co/HKUSTAudio/Llasa-1B-Multilingual).

## Model Overview

This text-to-speech (TTS) model has been trained on a custom dataset representing **7,000 hours** of high-quality audio data. The audio data consisted of permissive podcasts, lectures and other OER data. 



## Training Details

- **Base Model:** HKUSTAudio/Llasa-1B-Multilingual
- **Dataset:** A custom dataset comprising **7,000 hours** of data.
- **Compute Resources:** The training was performed using **4x L40s GPUs**.
- **Raw Training Time:** Approximately **20 hours** not included the data preprocessing with xcodec2 (note: training was restarted after 3 crashes).
  
Huge thanks to Hugging Face for their generous GPU grant! 🤗


## 👨‍💻 Installation
First install the following pip packages: 
```bash
pip install xcodec2
pip install torch==2.6.0 torchaudio
```
Install it in the two steps given above! If you get the error message with "flex attention" make sure to install `torch==2.6.0 torchaudio`. If you get an torchaudio error, make sure to update and match it to the torch 2.6.0 version. 

## 🛠️ Usage
### 🎲 Random voice
A basic example using the Hugging Face Transformers:

```python
import os
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import soundfile as sf

llasa_1b_german = 'MultiLlasa/Llasa-1B-Multilingual-German'  

# Loading the model 
tokenizer = AutoTokenizer.from_pretrained(llasa_1b_german)
model = AutoModelForCausalLM.from_pretrained(llasa_1b_german)
model.to('cuda')

# Load XCodec2 model
from xcodec2.modeling_xcodec2 import XCodec2Model
model_path = "HKUST-Audio/xcodec2"
Codec_model = XCodec2Model.from_pretrained(model_path)
Codec_model.cuda()

input_text = "\"Weißt du was, Hoppi\", sagte der weise Uhu, \"manchmal ist es gar nicht so wichtig, das Ende des Regenbogens zu finden. Das Schönste ist doch, dass wir alle zusammen dieses Abenteuer erleben!"


def extract_speech_ids(speech_tokens_str):
    speech_ids = []
    for token_str in speech_tokens_str:
        if token_str.startswith('<|s_') and token_str.endswith('|>'):
            num_str = token_str[4:-2]
            num = int(num_str)
            speech_ids.append(num)
        else:
            print(f"Unexpected token: {token_str}")
    return speech_ids

with torch.no_grad():
    formatted_text = f"<|TEXT_UNDERSTANDING_START|>{input_text}<|TEXT_UNDERSTANDING_END|>"
    
    chat = [
        {"role": "user", "content": "Convert the text to speech:" + formatted_text},
        {"role": "assistant", "content": "<|SPEECH_GENERATION_START|>"}
    ]

    input_ids = tokenizer.apply_chat_template(
        chat,
        tokenize=True,
        return_tensors='pt',
        continue_final_message=True
    )
    input_ids = input_ids.to('cuda')
    speech_end_id = tokenizer.convert_tokens_to_ids('<|SPEECH_GENERATION_END|>')

    outputs = model.generate(
        input_ids,
        max_length=2048,
        eos_token_id=speech_end_id,
        do_sample=True,
        top_p=1,
        temperature=0.8,
    )

    generated_ids = outputs[0][input_ids.shape[1]:-1]
    speech_tokens = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
    speech_tokens = extract_speech_ids(speech_tokens)
    speech_tokens = torch.tensor(speech_tokens).cuda().unsqueeze(0).unsqueeze(0)
    gen_wav = Codec_model.decode_code(speech_tokens)
    
    
sf.write("generation.wav", gen_wav[0, 0, :].cpu().numpy(), 16000)

```

### 🎯 Using a specific speaker

An example with speaker reference: 
```python 
import torch
import torchaudio
import tempfile
import soundfile as sf
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline

# Input your reference audio and optional the text
sample_audio_path = "male.wav"
sample_audio_text = None # Set it to none to use whisper for transcription
# Input the target text here
target_text = "Und apropos Spannungen und Unfälle, in Stuttgart gibt es auch einige Schlagzeilen. Die Polizei sucht Zeugen, nachdem in der Stadt mehrere Autoscheiben eingeschlagen wurden. Und gestern kam es im Stuttgarter Osten zu einer Verfolgungsjagd mit einer jungen BMW-Fahrerin, die vor einer Polizeistreife geflüchtet ist."
output_filename = "no_speaker_example.wav"


#### Do not edit below ####
llasa_model_name = "MultiLlasa/Llasa-1B-Multilingual-German"
tokenizer = AutoTokenizer.from_pretrained(llasa_model_name)
model = AutoModelForCausalLM.from_pretrained(llasa_model_name)
model.to("cuda")

from xcodec2.modeling_xcodec2 import XCodec2Model
codec_model_path = "HKUST-Audio/xcodec2"
Codec_model = XCodec2Model.from_pretrained(codec_model_path)
Codec_model.cuda()

whisper_turbo_pipe = pipeline(
    "automatic-speech-recognition",
    model="openai/whisper-large-v3-turbo",
    torch_dtype=torch.float16,
    device="cuda",
)

def ids_to_speech_tokens(speech_ids):
    speech_tokens_str = []
    for speech_id in speech_ids:
        speech_tokens_str.append(f"<|s_{speech_id}|>")
    return speech_tokens_str

waveform, sample_rate = torchaudio.load(sample_audio_path)

max_secs = 15
if len(waveform[0]) / sample_rate > 15:
    print("Warning: Trimming audio to first 15secs.")
    waveform = waveform[:, : sample_rate * 15]
    waveform = torch.nn.functional.pad( waveform, (0, int(sample_rate * 0.5)), "constant", 0)

if waveform.size(0) > 1:
    waveform = torch.mean(waveform, dim=0, keepdim=True)

prompt_wav = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(waveform)

if sample_audio_text is None:
    print("Transcribing audio...")
    transcription = whisper_turbo_pipe(waveform[0].numpy())["text"].strip()
else:
    transcription = sample_audio_text

print("Transcription:", transcription)

if len(target_text) == 0:
    raise ValueError("Target text must be provided!")
elif len(target_text) > 500:
    print("Text is too long; trimming to first 500 characters.")
    target_text = target_text[:500]

input_text = transcription + " " + target_text

with torch.no_grad():
    vq_code_prompt = Codec_model.encode_code(input_waveform=prompt_wav)
    vq_code_prompt = vq_code_prompt[0, 0, :]
    speech_ids_prefix = ids_to_speech_tokens(vq_code_prompt)

    formatted_text = f"<|TEXT_UNDERSTANDING_START|>{input_text}<|TEXT_UNDERSTANDING_END|>"

    chat = [
        {"role": "user", "content": "Convert the text to speech:" + formatted_text},
        {"role": "assistant", "content": "<|SPEECH_GENERATION_START|>" + "".join(speech_ids_prefix)}
        ]

    input_ids = tokenizer.apply_chat_template(chat, tokenize=True, return_tensors="pt", continue_final_message=True)
    input_ids = input_ids.to("cuda")
    speech_end_id = tokenizer.convert_tokens_to_ids("<|SPEECH_GENERATION_END|>")

    outputs = model.generate(
        input_ids,
        max_length=2048, 
        eos_token_id=speech_end_id,
        do_sample=True,
        top_p=1,
        temperature=0.8,
        min_new_tokens=4, # Fix so the model does not directly stop 
    )

    generated_ids = outputs[0][input_ids.shape[1] - len(speech_ids_prefix) : -1]

    speech_tokens = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
    speech_tokens = extract_speech_ids(speech_tokens)
    speech_tokens = torch.tensor(speech_tokens).cuda().unsqueeze(0).unsqueeze(0)

    gen_wav = Codec_model.decode_code(speech_tokens)
    gen_wav = gen_wav[:, :, prompt_wav.shape[1] :]
    sf.write(output_filename, gen_wav[0, 0, :].cpu().numpy(), 16000)
```


## Tips
- With a reference speaker, audio glitches can happen. Try to increase the temperature to get better results. 

## License

This project is licensed under the [CC-BY-NC-4.0 license](https://creativecommons.org/licenses/by-nc/4.0/).

## Acknowledgments

- **Hugging Face:** Thanks for the grant that made this project possible.
* [**HKUSTAudio:**](https://huggingface.co/HKUSTAudio/Llasa-1B-Multilingual) for providing the model open source and a great inference, training and preprocessing (xcodec2) script!