Saleh Refahi
commited on
Commit
·
2618f79
1
Parent(s):
a7f9499
Add custom KmerTokenizer and update __init__.py
Browse files- .ipynb_checkpoints/__init__-checkpoint.py +1 -0
- .ipynb_checkpoints/tokenizer-checkpoint.py +113 -0
- __init__.py +1 -0
- tokenizer.py +113 -0
.ipynb_checkpoints/__init__-checkpoint.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .tokenizer import KmerTokenizer
|
.ipynb_checkpoints/tokenizer-checkpoint.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import itertools
|
2 |
+
from transformers import PreTrainedTokenizer
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
|
6 |
+
class KmerTokenizer(PreTrainedTokenizer):
|
7 |
+
def __init__(self, vocab_file=None, kmerlen=6, overlapping=True, maxlen=400, **kwargs):
|
8 |
+
self.kmerlen = kmerlen
|
9 |
+
self.overlapping = overlapping
|
10 |
+
self.maxlen = maxlen
|
11 |
+
|
12 |
+
# Initialize vocabulary
|
13 |
+
self.VOCAB = [''.join(i) for i in itertools.product(*(['ATCG'] * int(self.kmerlen)))]
|
14 |
+
self.VOCAB_SIZE = len(self.VOCAB) + 5
|
15 |
+
|
16 |
+
self.tokendict = dict(zip(self.VOCAB, range(5, self.VOCAB_SIZE)))
|
17 |
+
self.tokendict['[UNK]'] = 0
|
18 |
+
self.tokendict['[SEP]'] = 1
|
19 |
+
self.tokendict['[CLS]'] = 2
|
20 |
+
self.tokendict['[MASK]'] = 3
|
21 |
+
self.tokendict['[PAD]'] = 4
|
22 |
+
|
23 |
+
super().__init__(**kwargs)
|
24 |
+
|
25 |
+
def _tokenize(self, text):
|
26 |
+
tokens = []
|
27 |
+
stoprange = len(text) - (self.kmerlen - 1)
|
28 |
+
if self.overlapping:
|
29 |
+
for k in range(0, stoprange):
|
30 |
+
kmer = text[k:k + self.kmerlen]
|
31 |
+
if set(kmer).issubset('ATCG'):
|
32 |
+
tokens.append(kmer)
|
33 |
+
else:
|
34 |
+
for k in range(0, stoprange, self.kmerlen):
|
35 |
+
kmer = text[k:k + self.kmerlen]
|
36 |
+
if set(kmer).issubset('ATCG'):
|
37 |
+
tokens.append(kmer)
|
38 |
+
return tokens
|
39 |
+
|
40 |
+
def _convert_token_to_id(self, token):
|
41 |
+
return self.tokendict.get(token, self.tokendict['[UNK]'])
|
42 |
+
|
43 |
+
def _convert_id_to_token(self, index):
|
44 |
+
inv_tokendict = {v: k for k, v in self.tokendict.items()}
|
45 |
+
return inv_tokendict.get(index, '[UNK]')
|
46 |
+
|
47 |
+
def convert_tokens_to_string(self, tokens):
|
48 |
+
return ' '.join(tokens)
|
49 |
+
|
50 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
51 |
+
if token_ids_1 is None:
|
52 |
+
return [self.tokendict['[CLS]']] + token_ids_0 + [self.tokendict['[SEP]']]
|
53 |
+
return [self.tokendict['[CLS]']] + token_ids_0 + [self.tokendict['[SEP]']] + token_ids_1 + [self.tokendict['[SEP]']]
|
54 |
+
|
55 |
+
def get_vocab(self):
|
56 |
+
return self.tokendict
|
57 |
+
|
58 |
+
def kmer_tokenize(self, seq_list):
|
59 |
+
seq_ind_list = []
|
60 |
+
for seq in seq_list:
|
61 |
+
tokens = self._tokenize(seq)
|
62 |
+
token_ids = [self._convert_token_to_id(token) for token in tokens]
|
63 |
+
if len(token_ids) < self.maxlen:
|
64 |
+
token_ids.extend([self.tokendict['[PAD]']] * (self.maxlen - len(token_ids)))
|
65 |
+
else:
|
66 |
+
token_ids = token_ids[:self.maxlen]
|
67 |
+
seq_ind_list.append(token_ids)
|
68 |
+
return seq_ind_list
|
69 |
+
|
70 |
+
def save_vocabulary(self, save_directory, filename_prefix=None):
|
71 |
+
if not os.path.isdir(save_directory):
|
72 |
+
os.makedirs(save_directory)
|
73 |
+
|
74 |
+
vocab_file = os.path.join(save_directory, (filename_prefix + '-' if filename_prefix else '') + 'vocab.json')
|
75 |
+
|
76 |
+
with open(vocab_file, 'w') as f:
|
77 |
+
json.dump(self.tokendict, f)
|
78 |
+
|
79 |
+
return (vocab_file,)
|
80 |
+
|
81 |
+
def save_pretrained(self, save_directory, **kwargs):
|
82 |
+
special_tokens_map_file = os.path.join(save_directory, "special_tokens_map.json")
|
83 |
+
with open(special_tokens_map_file, "w") as f:
|
84 |
+
json.dump({
|
85 |
+
"kmerlen": self.kmerlen,
|
86 |
+
"overlapping": self.overlapping,
|
87 |
+
"maxlen": self.maxlen
|
88 |
+
}, f)
|
89 |
+
vocab_files = self.save_vocabulary(save_directory)
|
90 |
+
return (special_tokens_map_file,) + vocab_files
|
91 |
+
|
92 |
+
@classmethod
|
93 |
+
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
|
94 |
+
# Load tokenizer using the parent class method
|
95 |
+
tokenizer = super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
|
96 |
+
|
97 |
+
# Load special tokens map
|
98 |
+
special_tokens_map_file = os.path.join(pretrained_model_name_or_path, "special_tokens_map.json")
|
99 |
+
if os.path.isfile(special_tokens_map_file):
|
100 |
+
with open(special_tokens_map_file, "r") as f:
|
101 |
+
special_tokens_map = json.load(f)
|
102 |
+
tokenizer.kmerlen = special_tokens_map.get("kmerlen", 6)
|
103 |
+
tokenizer.overlapping = special_tokens_map.get("overlapping", True)
|
104 |
+
tokenizer.maxlen = special_tokens_map.get("maxlen", 400)
|
105 |
+
|
106 |
+
# Load vocabulary
|
107 |
+
vocab_file = os.path.join(pretrained_model_name_or_path, "vocab.json")
|
108 |
+
if os.path.isfile(vocab_file):
|
109 |
+
with open(vocab_file, "r") as f:
|
110 |
+
tokendict = json.load(f)
|
111 |
+
tokenizer.tokendict = tokendict
|
112 |
+
|
113 |
+
return tokenizer
|
__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .tokenizer import KmerTokenizer
|
tokenizer.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import itertools
|
2 |
+
from transformers import PreTrainedTokenizer
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
|
6 |
+
class KmerTokenizer(PreTrainedTokenizer):
|
7 |
+
def __init__(self, vocab_file=None, kmerlen=6, overlapping=True, maxlen=400, **kwargs):
|
8 |
+
self.kmerlen = kmerlen
|
9 |
+
self.overlapping = overlapping
|
10 |
+
self.maxlen = maxlen
|
11 |
+
|
12 |
+
# Initialize vocabulary
|
13 |
+
self.VOCAB = [''.join(i) for i in itertools.product(*(['ATCG'] * int(self.kmerlen)))]
|
14 |
+
self.VOCAB_SIZE = len(self.VOCAB) + 5
|
15 |
+
|
16 |
+
self.tokendict = dict(zip(self.VOCAB, range(5, self.VOCAB_SIZE)))
|
17 |
+
self.tokendict['[UNK]'] = 0
|
18 |
+
self.tokendict['[SEP]'] = 1
|
19 |
+
self.tokendict['[CLS]'] = 2
|
20 |
+
self.tokendict['[MASK]'] = 3
|
21 |
+
self.tokendict['[PAD]'] = 4
|
22 |
+
|
23 |
+
super().__init__(**kwargs)
|
24 |
+
|
25 |
+
def _tokenize(self, text):
|
26 |
+
tokens = []
|
27 |
+
stoprange = len(text) - (self.kmerlen - 1)
|
28 |
+
if self.overlapping:
|
29 |
+
for k in range(0, stoprange):
|
30 |
+
kmer = text[k:k + self.kmerlen]
|
31 |
+
if set(kmer).issubset('ATCG'):
|
32 |
+
tokens.append(kmer)
|
33 |
+
else:
|
34 |
+
for k in range(0, stoprange, self.kmerlen):
|
35 |
+
kmer = text[k:k + self.kmerlen]
|
36 |
+
if set(kmer).issubset('ATCG'):
|
37 |
+
tokens.append(kmer)
|
38 |
+
return tokens
|
39 |
+
|
40 |
+
def _convert_token_to_id(self, token):
|
41 |
+
return self.tokendict.get(token, self.tokendict['[UNK]'])
|
42 |
+
|
43 |
+
def _convert_id_to_token(self, index):
|
44 |
+
inv_tokendict = {v: k for k, v in self.tokendict.items()}
|
45 |
+
return inv_tokendict.get(index, '[UNK]')
|
46 |
+
|
47 |
+
def convert_tokens_to_string(self, tokens):
|
48 |
+
return ' '.join(tokens)
|
49 |
+
|
50 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
51 |
+
if token_ids_1 is None:
|
52 |
+
return [self.tokendict['[CLS]']] + token_ids_0 + [self.tokendict['[SEP]']]
|
53 |
+
return [self.tokendict['[CLS]']] + token_ids_0 + [self.tokendict['[SEP]']] + token_ids_1 + [self.tokendict['[SEP]']]
|
54 |
+
|
55 |
+
def get_vocab(self):
|
56 |
+
return self.tokendict
|
57 |
+
|
58 |
+
def kmer_tokenize(self, seq_list):
|
59 |
+
seq_ind_list = []
|
60 |
+
for seq in seq_list:
|
61 |
+
tokens = self._tokenize(seq)
|
62 |
+
token_ids = [self._convert_token_to_id(token) for token in tokens]
|
63 |
+
if len(token_ids) < self.maxlen:
|
64 |
+
token_ids.extend([self.tokendict['[PAD]']] * (self.maxlen - len(token_ids)))
|
65 |
+
else:
|
66 |
+
token_ids = token_ids[:self.maxlen]
|
67 |
+
seq_ind_list.append(token_ids)
|
68 |
+
return seq_ind_list
|
69 |
+
|
70 |
+
def save_vocabulary(self, save_directory, filename_prefix=None):
|
71 |
+
if not os.path.isdir(save_directory):
|
72 |
+
os.makedirs(save_directory)
|
73 |
+
|
74 |
+
vocab_file = os.path.join(save_directory, (filename_prefix + '-' if filename_prefix else '') + 'vocab.json')
|
75 |
+
|
76 |
+
with open(vocab_file, 'w') as f:
|
77 |
+
json.dump(self.tokendict, f)
|
78 |
+
|
79 |
+
return (vocab_file,)
|
80 |
+
|
81 |
+
def save_pretrained(self, save_directory, **kwargs):
|
82 |
+
special_tokens_map_file = os.path.join(save_directory, "special_tokens_map.json")
|
83 |
+
with open(special_tokens_map_file, "w") as f:
|
84 |
+
json.dump({
|
85 |
+
"kmerlen": self.kmerlen,
|
86 |
+
"overlapping": self.overlapping,
|
87 |
+
"maxlen": self.maxlen
|
88 |
+
}, f)
|
89 |
+
vocab_files = self.save_vocabulary(save_directory)
|
90 |
+
return (special_tokens_map_file,) + vocab_files
|
91 |
+
|
92 |
+
@classmethod
|
93 |
+
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
|
94 |
+
# Load tokenizer using the parent class method
|
95 |
+
tokenizer = super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
|
96 |
+
|
97 |
+
# Load special tokens map
|
98 |
+
special_tokens_map_file = os.path.join(pretrained_model_name_or_path, "special_tokens_map.json")
|
99 |
+
if os.path.isfile(special_tokens_map_file):
|
100 |
+
with open(special_tokens_map_file, "r") as f:
|
101 |
+
special_tokens_map = json.load(f)
|
102 |
+
tokenizer.kmerlen = special_tokens_map.get("kmerlen", 6)
|
103 |
+
tokenizer.overlapping = special_tokens_map.get("overlapping", True)
|
104 |
+
tokenizer.maxlen = special_tokens_map.get("maxlen", 400)
|
105 |
+
|
106 |
+
# Load vocabulary
|
107 |
+
vocab_file = os.path.join(pretrained_model_name_or_path, "vocab.json")
|
108 |
+
if os.path.isfile(vocab_file):
|
109 |
+
with open(vocab_file, "r") as f:
|
110 |
+
tokendict = json.load(f)
|
111 |
+
tokenizer.tokendict = tokendict
|
112 |
+
|
113 |
+
return tokenizer
|