Saleh Refahi commited on
Commit
2618f79
·
1 Parent(s): a7f9499

Add custom KmerTokenizer and update __init__.py

Browse files
.ipynb_checkpoints/__init__-checkpoint.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .tokenizer import KmerTokenizer
.ipynb_checkpoints/tokenizer-checkpoint.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import itertools
2
+ from transformers import PreTrainedTokenizer
3
+ import json
4
+ import os
5
+
6
+ class KmerTokenizer(PreTrainedTokenizer):
7
+ def __init__(self, vocab_file=None, kmerlen=6, overlapping=True, maxlen=400, **kwargs):
8
+ self.kmerlen = kmerlen
9
+ self.overlapping = overlapping
10
+ self.maxlen = maxlen
11
+
12
+ # Initialize vocabulary
13
+ self.VOCAB = [''.join(i) for i in itertools.product(*(['ATCG'] * int(self.kmerlen)))]
14
+ self.VOCAB_SIZE = len(self.VOCAB) + 5
15
+
16
+ self.tokendict = dict(zip(self.VOCAB, range(5, self.VOCAB_SIZE)))
17
+ self.tokendict['[UNK]'] = 0
18
+ self.tokendict['[SEP]'] = 1
19
+ self.tokendict['[CLS]'] = 2
20
+ self.tokendict['[MASK]'] = 3
21
+ self.tokendict['[PAD]'] = 4
22
+
23
+ super().__init__(**kwargs)
24
+
25
+ def _tokenize(self, text):
26
+ tokens = []
27
+ stoprange = len(text) - (self.kmerlen - 1)
28
+ if self.overlapping:
29
+ for k in range(0, stoprange):
30
+ kmer = text[k:k + self.kmerlen]
31
+ if set(kmer).issubset('ATCG'):
32
+ tokens.append(kmer)
33
+ else:
34
+ for k in range(0, stoprange, self.kmerlen):
35
+ kmer = text[k:k + self.kmerlen]
36
+ if set(kmer).issubset('ATCG'):
37
+ tokens.append(kmer)
38
+ return tokens
39
+
40
+ def _convert_token_to_id(self, token):
41
+ return self.tokendict.get(token, self.tokendict['[UNK]'])
42
+
43
+ def _convert_id_to_token(self, index):
44
+ inv_tokendict = {v: k for k, v in self.tokendict.items()}
45
+ return inv_tokendict.get(index, '[UNK]')
46
+
47
+ def convert_tokens_to_string(self, tokens):
48
+ return ' '.join(tokens)
49
+
50
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
51
+ if token_ids_1 is None:
52
+ return [self.tokendict['[CLS]']] + token_ids_0 + [self.tokendict['[SEP]']]
53
+ return [self.tokendict['[CLS]']] + token_ids_0 + [self.tokendict['[SEP]']] + token_ids_1 + [self.tokendict['[SEP]']]
54
+
55
+ def get_vocab(self):
56
+ return self.tokendict
57
+
58
+ def kmer_tokenize(self, seq_list):
59
+ seq_ind_list = []
60
+ for seq in seq_list:
61
+ tokens = self._tokenize(seq)
62
+ token_ids = [self._convert_token_to_id(token) for token in tokens]
63
+ if len(token_ids) < self.maxlen:
64
+ token_ids.extend([self.tokendict['[PAD]']] * (self.maxlen - len(token_ids)))
65
+ else:
66
+ token_ids = token_ids[:self.maxlen]
67
+ seq_ind_list.append(token_ids)
68
+ return seq_ind_list
69
+
70
+ def save_vocabulary(self, save_directory, filename_prefix=None):
71
+ if not os.path.isdir(save_directory):
72
+ os.makedirs(save_directory)
73
+
74
+ vocab_file = os.path.join(save_directory, (filename_prefix + '-' if filename_prefix else '') + 'vocab.json')
75
+
76
+ with open(vocab_file, 'w') as f:
77
+ json.dump(self.tokendict, f)
78
+
79
+ return (vocab_file,)
80
+
81
+ def save_pretrained(self, save_directory, **kwargs):
82
+ special_tokens_map_file = os.path.join(save_directory, "special_tokens_map.json")
83
+ with open(special_tokens_map_file, "w") as f:
84
+ json.dump({
85
+ "kmerlen": self.kmerlen,
86
+ "overlapping": self.overlapping,
87
+ "maxlen": self.maxlen
88
+ }, f)
89
+ vocab_files = self.save_vocabulary(save_directory)
90
+ return (special_tokens_map_file,) + vocab_files
91
+
92
+ @classmethod
93
+ def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
94
+ # Load tokenizer using the parent class method
95
+ tokenizer = super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
96
+
97
+ # Load special tokens map
98
+ special_tokens_map_file = os.path.join(pretrained_model_name_or_path, "special_tokens_map.json")
99
+ if os.path.isfile(special_tokens_map_file):
100
+ with open(special_tokens_map_file, "r") as f:
101
+ special_tokens_map = json.load(f)
102
+ tokenizer.kmerlen = special_tokens_map.get("kmerlen", 6)
103
+ tokenizer.overlapping = special_tokens_map.get("overlapping", True)
104
+ tokenizer.maxlen = special_tokens_map.get("maxlen", 400)
105
+
106
+ # Load vocabulary
107
+ vocab_file = os.path.join(pretrained_model_name_or_path, "vocab.json")
108
+ if os.path.isfile(vocab_file):
109
+ with open(vocab_file, "r") as f:
110
+ tokendict = json.load(f)
111
+ tokenizer.tokendict = tokendict
112
+
113
+ return tokenizer
__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .tokenizer import KmerTokenizer
tokenizer.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import itertools
2
+ from transformers import PreTrainedTokenizer
3
+ import json
4
+ import os
5
+
6
+ class KmerTokenizer(PreTrainedTokenizer):
7
+ def __init__(self, vocab_file=None, kmerlen=6, overlapping=True, maxlen=400, **kwargs):
8
+ self.kmerlen = kmerlen
9
+ self.overlapping = overlapping
10
+ self.maxlen = maxlen
11
+
12
+ # Initialize vocabulary
13
+ self.VOCAB = [''.join(i) for i in itertools.product(*(['ATCG'] * int(self.kmerlen)))]
14
+ self.VOCAB_SIZE = len(self.VOCAB) + 5
15
+
16
+ self.tokendict = dict(zip(self.VOCAB, range(5, self.VOCAB_SIZE)))
17
+ self.tokendict['[UNK]'] = 0
18
+ self.tokendict['[SEP]'] = 1
19
+ self.tokendict['[CLS]'] = 2
20
+ self.tokendict['[MASK]'] = 3
21
+ self.tokendict['[PAD]'] = 4
22
+
23
+ super().__init__(**kwargs)
24
+
25
+ def _tokenize(self, text):
26
+ tokens = []
27
+ stoprange = len(text) - (self.kmerlen - 1)
28
+ if self.overlapping:
29
+ for k in range(0, stoprange):
30
+ kmer = text[k:k + self.kmerlen]
31
+ if set(kmer).issubset('ATCG'):
32
+ tokens.append(kmer)
33
+ else:
34
+ for k in range(0, stoprange, self.kmerlen):
35
+ kmer = text[k:k + self.kmerlen]
36
+ if set(kmer).issubset('ATCG'):
37
+ tokens.append(kmer)
38
+ return tokens
39
+
40
+ def _convert_token_to_id(self, token):
41
+ return self.tokendict.get(token, self.tokendict['[UNK]'])
42
+
43
+ def _convert_id_to_token(self, index):
44
+ inv_tokendict = {v: k for k, v in self.tokendict.items()}
45
+ return inv_tokendict.get(index, '[UNK]')
46
+
47
+ def convert_tokens_to_string(self, tokens):
48
+ return ' '.join(tokens)
49
+
50
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
51
+ if token_ids_1 is None:
52
+ return [self.tokendict['[CLS]']] + token_ids_0 + [self.tokendict['[SEP]']]
53
+ return [self.tokendict['[CLS]']] + token_ids_0 + [self.tokendict['[SEP]']] + token_ids_1 + [self.tokendict['[SEP]']]
54
+
55
+ def get_vocab(self):
56
+ return self.tokendict
57
+
58
+ def kmer_tokenize(self, seq_list):
59
+ seq_ind_list = []
60
+ for seq in seq_list:
61
+ tokens = self._tokenize(seq)
62
+ token_ids = [self._convert_token_to_id(token) for token in tokens]
63
+ if len(token_ids) < self.maxlen:
64
+ token_ids.extend([self.tokendict['[PAD]']] * (self.maxlen - len(token_ids)))
65
+ else:
66
+ token_ids = token_ids[:self.maxlen]
67
+ seq_ind_list.append(token_ids)
68
+ return seq_ind_list
69
+
70
+ def save_vocabulary(self, save_directory, filename_prefix=None):
71
+ if not os.path.isdir(save_directory):
72
+ os.makedirs(save_directory)
73
+
74
+ vocab_file = os.path.join(save_directory, (filename_prefix + '-' if filename_prefix else '') + 'vocab.json')
75
+
76
+ with open(vocab_file, 'w') as f:
77
+ json.dump(self.tokendict, f)
78
+
79
+ return (vocab_file,)
80
+
81
+ def save_pretrained(self, save_directory, **kwargs):
82
+ special_tokens_map_file = os.path.join(save_directory, "special_tokens_map.json")
83
+ with open(special_tokens_map_file, "w") as f:
84
+ json.dump({
85
+ "kmerlen": self.kmerlen,
86
+ "overlapping": self.overlapping,
87
+ "maxlen": self.maxlen
88
+ }, f)
89
+ vocab_files = self.save_vocabulary(save_directory)
90
+ return (special_tokens_map_file,) + vocab_files
91
+
92
+ @classmethod
93
+ def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
94
+ # Load tokenizer using the parent class method
95
+ tokenizer = super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
96
+
97
+ # Load special tokens map
98
+ special_tokens_map_file = os.path.join(pretrained_model_name_or_path, "special_tokens_map.json")
99
+ if os.path.isfile(special_tokens_map_file):
100
+ with open(special_tokens_map_file, "r") as f:
101
+ special_tokens_map = json.load(f)
102
+ tokenizer.kmerlen = special_tokens_map.get("kmerlen", 6)
103
+ tokenizer.overlapping = special_tokens_map.get("overlapping", True)
104
+ tokenizer.maxlen = special_tokens_map.get("maxlen", 400)
105
+
106
+ # Load vocabulary
107
+ vocab_file = os.path.join(pretrained_model_name_or_path, "vocab.json")
108
+ if os.path.isfile(vocab_file):
109
+ with open(vocab_file, "r") as f:
110
+ tokendict = json.load(f)
111
+ tokenizer.tokendict = tokendict
112
+
113
+ return tokenizer