import argparse import os import cv2 import torch from insightface.app import FaceAnalysis from imageio_ffmpeg import get_ffmpeg_exe import time import subprocess parser = argparse.ArgumentParser() parser.add_argument('--video_path', type=str, default='') parser.add_argument('--kps_sequence_save_path', type=str, default='') parser.add_argument('--audio_save_path', type=str, default='') parser.add_argument('--device', type=str, default='cuda') parser.add_argument('--gpu_id', type=int, default=0) parser.add_argument('--insightface_model_path', type=str, default='./model_ckpts/insightface_models/') parser.add_argument('--height', type=int, default=512) parser.add_argument('--width', type=int, default=512) args = parser.parse_args() # Convert paths to absolute paths args.video_path = os.path.abspath(args.video_path) args.kps_sequence_save_path = os.path.abspath(args.kps_sequence_save_path) args.audio_save_path = os.path.abspath(args.audio_save_path) args.insightface_model_path = os.path.abspath(args.insightface_model_path) app = FaceAnalysis( providers=['CUDAExecutionProvider' if args.device == 'cuda' else 'CPUExecutionProvider'], provider_options=[{'device_id': args.gpu_id}] if args.device == 'cuda' else [], root=args.insightface_model_path, ) app.prepare(ctx_id=0, det_size=(args.height, args.width)) # Use subprocess.run() with shell=True for paths with space characters subprocess.run(f'"{get_ffmpeg_exe()}" -i "{args.video_path}" -y -vn "{args.audio_save_path}"', shell=True) kps_sequence = [] video_capture = cv2.VideoCapture(args.video_path) total_frames = int(video_capture.get(cv2.CAP_PROP_FRAME_COUNT)) frame_idx = 0 while video_capture.isOpened(): ret, frame = video_capture.read() if not ret: break start_time = time.time() frame = cv2.resize(frame, (args.width, args.height)) faces = app.get(frame) end_time = time.time() duration = end_time - start_time assert len(faces) == 1, f'There are {len(faces)} faces in the {frame_idx}-th frame. Only one face is supported.' kps = faces[0].kps[:3] kps_sequence.append(kps) frame_idx += 1 processed_frames = frame_idx remaining_frames = total_frames - frame_idx print(f"Frame {frame_idx}: Face detection duration = {duration:.4f} seconds") print(f"Status: Processed {processed_frames} frames, {remaining_frames} frames remaining") # Use double quotes for paths with space characters torch.save(kps_sequence, args.kps_sequence_save_path)