Upload giga_App.py
Browse files- giga_App.py +62 -22
giga_App.py
CHANGED
@@ -6,8 +6,16 @@ import torch
|
|
6 |
import os
|
7 |
import time
|
8 |
from pathlib import Path
|
|
|
9 |
import argparse
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
# Force CPU usage
|
12 |
torch.set_default_tensor_type(torch.FloatTensor)
|
13 |
|
@@ -21,21 +29,29 @@ aura_sr = AuraSR.from_pretrained("fal/AuraSR-v2")
|
|
21 |
# Restore original torch.load
|
22 |
torch.load = original_load
|
23 |
|
24 |
-
def process_single_image(input_image_path):
|
25 |
if input_image_path is None:
|
26 |
raise gr.Error("Please provide an image to upscale.")
|
27 |
|
28 |
-
#
|
|
|
|
|
|
|
29 |
pil_image = Image.open(input_image_path)
|
30 |
|
31 |
-
# Upscale the
|
32 |
start_time = time.time()
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
processing_time = time.time() - start_time
|
35 |
-
|
36 |
print(f"Processing time: {processing_time:.2f} seconds")
|
37 |
|
38 |
-
# Save the upscaled image
|
39 |
output_folder = "outputs"
|
40 |
os.makedirs(output_folder, exist_ok=True)
|
41 |
|
@@ -50,9 +66,11 @@ def process_single_image(input_image_path):
|
|
50 |
|
51 |
upscaled_image.save(output_path)
|
52 |
|
53 |
-
|
|
|
|
|
54 |
|
55 |
-
def process_batch(input_folder, output_folder=None):
|
56 |
if not input_folder:
|
57 |
raise gr.Error("Please provide an input folder path.")
|
58 |
|
@@ -60,18 +78,24 @@ def process_batch(input_folder, output_folder=None):
|
|
60 |
output_folder = "outputs"
|
61 |
|
62 |
os.makedirs(output_folder, exist_ok=True)
|
63 |
-
|
64 |
-
|
65 |
total_files = len(input_files)
|
66 |
processed_files = 0
|
67 |
results = []
|
68 |
|
|
|
|
|
|
|
69 |
for filename in input_files:
|
70 |
input_path = os.path.join(input_folder, filename)
|
71 |
pil_image = Image.open(input_path)
|
72 |
|
73 |
start_time = time.time()
|
74 |
-
|
|
|
|
|
|
|
75 |
processing_time = time.time() - start_time
|
76 |
|
77 |
output_filename = os.path.splitext(filename)[0] + ".png"
|
@@ -85,17 +109,17 @@ def process_batch(input_folder, output_folder=None):
|
|
85 |
upscaled_image.save(output_path)
|
86 |
|
87 |
processed_files += 1
|
88 |
-
print(f"Processed {processed_files}/{total_files}: {filename} in {processing_time:.2f} seconds")
|
89 |
-
|
90 |
results.append(output_path)
|
|
|
|
|
91 |
|
92 |
-
|
93 |
-
|
94 |
|
95 |
-
title = """<h1 align="center">AuraSR Giga Upscaler
|
96 |
<p><center>AuraSR: new open source super-resolution upscaler based on GigaGAN. Works perfect on some images and fails on some images so give it a try</center></p>
|
97 |
<p><center>Works very fast and very VRAM friendly</center></p>
|
98 |
-
<h2 align="center">Latest version on : <a href="https://www.patreon.com/posts/110060645">https://www.patreon.com/posts/110060645</a></
|
99 |
"""
|
100 |
|
101 |
def create_demo():
|
@@ -106,27 +130,43 @@ def create_demo():
|
|
106 |
with gr.Row():
|
107 |
with gr.Column(scale=1):
|
108 |
input_image = gr.Image(label="Input Image", type="filepath")
|
|
|
|
|
|
|
|
|
|
|
109 |
process_btn = gr.Button(value="Upscale Image", variant="primary")
|
110 |
with gr.Column(scale=1):
|
111 |
output_gallery = gr.Gallery(label="Before / After", columns=2)
|
|
|
|
|
|
|
112 |
|
|
|
113 |
process_btn.click(
|
114 |
fn=process_single_image,
|
115 |
-
inputs=[input_image],
|
116 |
-
outputs=output_gallery
|
117 |
)
|
118 |
|
119 |
with gr.Tab("Batch Processing"):
|
120 |
with gr.Row():
|
121 |
input_folder = gr.Textbox(label="Input Folder Path")
|
122 |
output_folder = gr.Textbox(label="Output Folder Path (Optional)")
|
|
|
|
|
|
|
|
|
|
|
123 |
batch_process_btn = gr.Button(value="Process Batch", variant="primary")
|
124 |
-
|
|
|
|
|
125 |
|
126 |
batch_process_btn.click(
|
127 |
fn=process_batch,
|
128 |
-
inputs=[input_folder, output_folder],
|
129 |
-
outputs=
|
130 |
)
|
131 |
|
132 |
return demo
|
|
|
6 |
import os
|
7 |
import time
|
8 |
from pathlib import Path
|
9 |
+
import platform
|
10 |
import argparse
|
11 |
|
12 |
+
def open_folder():
|
13 |
+
open_folder_path = os.path.abspath("outputs")
|
14 |
+
if platform.system() == "Windows":
|
15 |
+
os.startfile(open_folder_path)
|
16 |
+
elif platform.system() == "Linux":
|
17 |
+
os.system(f'xdg-open "{open_folder_path}"')
|
18 |
+
|
19 |
# Force CPU usage
|
20 |
torch.set_default_tensor_type(torch.FloatTensor)
|
21 |
|
|
|
29 |
# Restore original torch.load
|
30 |
torch.load = original_load
|
31 |
|
32 |
+
def process_single_image(input_image_path, reduce_seams):
|
33 |
if input_image_path is None:
|
34 |
raise gr.Error("Please provide an image to upscale.")
|
35 |
|
36 |
+
# Send an initial progress update.
|
37 |
+
yield [[], "Starting upscaling..."]
|
38 |
+
|
39 |
+
# Load the image.
|
40 |
pil_image = Image.open(input_image_path)
|
41 |
|
42 |
+
# Upscale using the chosen method.
|
43 |
start_time = time.time()
|
44 |
+
if reduce_seams:
|
45 |
+
# Using upscale_4x_overlapped to reduce seam artifacts.
|
46 |
+
print("using reduce seams")
|
47 |
+
upscaled_image = aura_sr.upscale_4x_overlapped(pil_image)
|
48 |
+
else:
|
49 |
+
# Default upscaling method.
|
50 |
+
upscaled_image = aura_sr.upscale_4x(pil_image)
|
51 |
processing_time = time.time() - start_time
|
|
|
52 |
print(f"Processing time: {processing_time:.2f} seconds")
|
53 |
|
54 |
+
# Save the upscaled image.
|
55 |
output_folder = "outputs"
|
56 |
os.makedirs(output_folder, exist_ok=True)
|
57 |
|
|
|
66 |
|
67 |
upscaled_image.save(output_path)
|
68 |
|
69 |
+
# Send the final progress update along with the before/after gallery.
|
70 |
+
yield [[input_image_path, output_path],
|
71 |
+
f"Upscaling complete in {processing_time:.2f} seconds"]
|
72 |
|
73 |
+
def process_batch(input_folder, output_folder=None, reduce_seams=False):
|
74 |
if not input_folder:
|
75 |
raise gr.Error("Please provide an input folder path.")
|
76 |
|
|
|
78 |
output_folder = "outputs"
|
79 |
|
80 |
os.makedirs(output_folder, exist_ok=True)
|
81 |
+
input_files = [f for f in os.listdir(input_folder) if f.lower().endswith(
|
82 |
+
('.png', '.jpg', '.jpeg', '.bmp', '.tiff'))]
|
83 |
total_files = len(input_files)
|
84 |
processed_files = 0
|
85 |
results = []
|
86 |
|
87 |
+
# Initial progress update.
|
88 |
+
yield [results, "Starting batch processing..."]
|
89 |
+
|
90 |
for filename in input_files:
|
91 |
input_path = os.path.join(input_folder, filename)
|
92 |
pil_image = Image.open(input_path)
|
93 |
|
94 |
start_time = time.time()
|
95 |
+
if reduce_seams:
|
96 |
+
upscaled_image = aura_sr.upscale_4x_overlapped(pil_image)
|
97 |
+
else:
|
98 |
+
upscaled_image = aura_sr.upscale_4x(pil_image)
|
99 |
processing_time = time.time() - start_time
|
100 |
|
101 |
output_filename = os.path.splitext(filename)[0] + ".png"
|
|
|
109 |
upscaled_image.save(output_path)
|
110 |
|
111 |
processed_files += 1
|
|
|
|
|
112 |
results.append(output_path)
|
113 |
+
# Yield progress update after processing each image.
|
114 |
+
yield [results, f"Processed {processed_files}/{total_files}: {filename} in {processing_time:.2f} seconds"]
|
115 |
|
116 |
+
# Final update.
|
117 |
+
yield [results, f"Batch processing complete. {processed_files} images processed."]
|
118 |
|
119 |
+
title = """<h1 align="center">AuraSR Giga Upscaler V2 by SECourses - Upscales to 4x</h1>
|
120 |
<p><center>AuraSR: new open source super-resolution upscaler based on GigaGAN. Works perfect on some images and fails on some images so give it a try</center></p>
|
121 |
<p><center>Works very fast and very VRAM friendly</center></p>
|
122 |
+
<h2 align="center">Latest version on : <a href="https://www.patreon.com/posts/110060645">https://www.patreon.com/posts/110060645</a></h2>
|
123 |
"""
|
124 |
|
125 |
def create_demo():
|
|
|
130 |
with gr.Row():
|
131 |
with gr.Column(scale=1):
|
132 |
input_image = gr.Image(label="Input Image", type="filepath")
|
133 |
+
reduce_seams = gr.Checkbox(
|
134 |
+
label="Reduce Seam Artifacts",
|
135 |
+
value=False,
|
136 |
+
info="upscale_4x upscales the image in tiles that do not overlap. This can result in seams. Use upscale_4x_overlapped to reduce seams. This will double the time upscaling by taking an additional pass and averaging the results."
|
137 |
+
)
|
138 |
process_btn = gr.Button(value="Upscale Image", variant="primary")
|
139 |
with gr.Column(scale=1):
|
140 |
output_gallery = gr.Gallery(label="Before / After", columns=2)
|
141 |
+
progress_text = gr.Markdown("Progress messages will appear here.")
|
142 |
+
btn_open_outputs = gr.Button("Open Outputs Folder", variant="primary")
|
143 |
+
btn_open_outputs.click(fn=open_folder)
|
144 |
|
145 |
+
# The function now yields two outputs: a gallery and a progress message.
|
146 |
process_btn.click(
|
147 |
fn=process_single_image,
|
148 |
+
inputs=[input_image, reduce_seams],
|
149 |
+
outputs=[output_gallery, progress_text]
|
150 |
)
|
151 |
|
152 |
with gr.Tab("Batch Processing"):
|
153 |
with gr.Row():
|
154 |
input_folder = gr.Textbox(label="Input Folder Path")
|
155 |
output_folder = gr.Textbox(label="Output Folder Path (Optional)")
|
156 |
+
reduce_seams_batch = gr.Checkbox(
|
157 |
+
label="Reduce Seam Artifacts",
|
158 |
+
value=False,
|
159 |
+
info="upscale_4x upscales the image in tiles that do not overlap. This can result in seams. Use upscale_4x_overlapped to reduce seams. This will double the time upscaling by taking an additional pass and averaging the results."
|
160 |
+
)
|
161 |
batch_process_btn = gr.Button(value="Process Batch", variant="primary")
|
162 |
+
with gr.Column():
|
163 |
+
output_gallery_batch = gr.Gallery(label="Processed Images")
|
164 |
+
progress_text_batch = gr.Markdown("Progress messages will appear here.")
|
165 |
|
166 |
batch_process_btn.click(
|
167 |
fn=process_batch,
|
168 |
+
inputs=[input_folder, output_folder, reduce_seams_batch],
|
169 |
+
outputs=[output_gallery_batch, progress_text_batch]
|
170 |
)
|
171 |
|
172 |
return demo
|