Last commit not found
import gradio as gr | |
from PIL import Image | |
import numpy as np | |
from aura_sr import AuraSR | |
import torch | |
import os | |
import time | |
from pathlib import Path | |
import argparse | |
# Force CPU usage | |
torch.set_default_tensor_type(torch.FloatTensor) | |
# Override torch.load to always use CPU | |
original_load = torch.load | |
torch.load = lambda *args, **kwargs: original_load(*args, **kwargs, map_location=torch.device('cpu')) | |
# Initialize the AuraSR model | |
aura_sr = AuraSR.from_pretrained("fal/AuraSR-v2") | |
# Restore original torch.load | |
torch.load = original_load | |
def process_single_image(input_image_path): | |
if input_image_path is None: | |
raise gr.Error("Please provide an image to upscale.") | |
# Load the image | |
pil_image = Image.open(input_image_path) | |
# Upscale the image using AuraSR | |
start_time = time.time() | |
upscaled_image = aura_sr.upscale_4x(pil_image) | |
processing_time = time.time() - start_time | |
print(f"Processing time: {processing_time:.2f} seconds") | |
# Save the upscaled image | |
output_folder = "outputs" | |
os.makedirs(output_folder, exist_ok=True) | |
input_filename = os.path.basename(input_image_path) | |
output_filename = os.path.splitext(input_filename)[0] | |
output_path = os.path.join(output_folder, output_filename + ".png") | |
counter = 1 | |
while os.path.exists(output_path): | |
output_path = os.path.join(output_folder, f"{output_filename}_{counter:04d}.png") | |
counter += 1 | |
upscaled_image.save(output_path) | |
return [input_image_path, output_path] | |
def process_batch(input_folder, output_folder=None): | |
if not input_folder: | |
raise gr.Error("Please provide an input folder path.") | |
if not output_folder: | |
output_folder = "outputs" | |
os.makedirs(output_folder, exist_ok=True) | |
input_files = [f for f in os.listdir(input_folder) if f.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.tiff'))] | |
total_files = len(input_files) | |
processed_files = 0 | |
results = [] | |
for filename in input_files: | |
input_path = os.path.join(input_folder, filename) | |
pil_image = Image.open(input_path) | |
start_time = time.time() | |
upscaled_image = aura_sr.upscale_4x(pil_image) | |
processing_time = time.time() - start_time | |
output_filename = os.path.splitext(filename)[0] + ".png" | |
output_path = os.path.join(output_folder, output_filename) | |
counter = 1 | |
while os.path.exists(output_path): | |
output_path = os.path.join(output_folder, f"{os.path.splitext(filename)[0]}_{counter:04d}.png") | |
counter += 1 | |
upscaled_image.save(output_path) | |
processed_files += 1 | |
print(f"Processed {processed_files}/{total_files}: {filename} in {processing_time:.2f} seconds") | |
results.append(output_path) | |
print(f"Batch processing complete. {processed_files} images processed.") | |
return results | |
title = """<h1 align="center">AuraSR Giga Upscaler V1 by SECourses - Upscales to 4x</h1> | |
<p><center>AuraSR: new open source super-resolution upscaler based on GigaGAN. Works perfect on some images and fails on some images so give it a try</center></p> | |
<p><center>Works very fast and very VRAM friendly</center></p> | |
<h2 align="center">Latest version on : <a href="https://www.patreon.com/posts/110060645">https://www.patreon.com/posts/110060645</a></h1> | |
""" | |
def create_demo(): | |
with gr.Blocks() as demo: | |
gr.HTML(title) | |
with gr.Tab("Single Image"): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
input_image = gr.Image(label="Input Image", type="filepath") | |
process_btn = gr.Button(value="Upscale Image", variant="primary") | |
with gr.Column(scale=1): | |
output_gallery = gr.Gallery(label="Before / After", columns=2) | |
process_btn.click( | |
fn=process_single_image, | |
inputs=[input_image], | |
outputs=output_gallery | |
) | |
with gr.Tab("Batch Processing"): | |
with gr.Row(): | |
input_folder = gr.Textbox(label="Input Folder Path") | |
output_folder = gr.Textbox(label="Output Folder Path (Optional)") | |
batch_process_btn = gr.Button(value="Process Batch", variant="primary") | |
output_gallery = gr.Gallery(label="Processed Images") | |
batch_process_btn.click( | |
fn=process_batch, | |
inputs=[input_folder, output_folder], | |
outputs=output_gallery | |
) | |
return demo | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description="AuraSR Image Upscaling") | |
parser.add_argument("--share", action="store_true", help="Create a publicly shareable link") | |
args = parser.parse_args() | |
demo = create_demo() | |
demo.launch(debug=True, inbrowser=True, share=args.share) |