import math import warnings import numpy as np from numpy.lib.stride_tricks import as_strided __all__ = ['toeplitz', 'circulant', 'hankel', 'hadamard', 'leslie', 'kron', 'block_diag', 'companion', 'helmert', 'hilbert', 'invhilbert', 'pascal', 'invpascal', 'dft', 'fiedler', 'fiedler_companion', 'convolution_matrix'] # ----------------------------------------------------------------------------- # matrix construction functions # ----------------------------------------------------------------------------- def toeplitz(c, r=None): r""" Construct a Toeplitz matrix. The Toeplitz matrix has constant diagonals, with c as its first column and r as its first row. If r is not given, ``r == conjugate(c)`` is assumed. Parameters ---------- c : array_like First column of the matrix. r : array_like, optional First row of the matrix. If None, ``r = conjugate(c)`` is assumed; in this case, if c[0] is real, the result is a Hermitian matrix. r[0] is ignored; the first row of the returned matrix is ``[c[0], r[1:]]``. .. warning:: Beginning in SciPy 1.17, multidimensional input will be treated as a batch, not ``ravel``\ ed. To preserve the existing behavior, ``ravel`` arguments before passing them to `toeplitz`. Returns ------- A : (len(c), len(r)) ndarray The Toeplitz matrix. Dtype is the same as ``(c[0] + r[0]).dtype``. See Also -------- circulant : circulant matrix hankel : Hankel matrix solve_toeplitz : Solve a Toeplitz system. Notes ----- The behavior when `c` or `r` is a scalar, or when `c` is complex and `r` is None, was changed in version 0.8.0. The behavior in previous versions was undocumented and is no longer supported. Examples -------- >>> from scipy.linalg import toeplitz >>> toeplitz([1,2,3], [1,4,5,6]) array([[1, 4, 5, 6], [2, 1, 4, 5], [3, 2, 1, 4]]) >>> toeplitz([1.0, 2+3j, 4-1j]) array([[ 1.+0.j, 2.-3.j, 4.+1.j], [ 2.+3.j, 1.+0.j, 2.-3.j], [ 4.-1.j, 2.+3.j, 1.+0.j]]) """ c = np.asarray(c) if r is None: r = c.conjugate() else: r = np.asarray(r) if c.ndim > 1 or r.ndim > 1: msg = ("Beginning in SciPy 1.17, multidimensional input will be treated as a " "batch, not `ravel`ed. To preserve the existing behavior and silence " "this warning, `ravel` arguments before passing them to `toeplitz`.") warnings.warn(msg, FutureWarning, stacklevel=2) c, r = c.ravel(), r.ravel() # Form a 1-D array containing a reversed c followed by r[1:] that could be # strided to give us toeplitz matrix. vals = np.concatenate((c[::-1], r[1:])) out_shp = len(c), len(r) n = vals.strides[0] return as_strided(vals[len(c)-1:], shape=out_shp, strides=(-n, n)).copy() def circulant(c): """ Construct a circulant matrix. Parameters ---------- c : (..., N,) array_like The first column(s) of the matrix. Multidimensional arrays are treated as a batch: each slice along the last axis is the first column of an output matrix. Returns ------- A : (..., N, N) ndarray A circulant matrix whose first column is given by `c`. For batch input, each slice of shape ``(N, N)`` along the last two dimensions of the output corresponds with a slice of shape ``(N,)`` along the last dimension of the input. See Also -------- toeplitz : Toeplitz matrix hankel : Hankel matrix solve_circulant : Solve a circulant system. Notes ----- .. versionadded:: 0.8.0 Examples -------- >>> from scipy.linalg import circulant >>> circulant([1, 2, 3]) array([[1, 3, 2], [2, 1, 3], [3, 2, 1]]) >>> circulant([[1, 2, 3], [4, 5, 6]]) array([[[1, 3, 2], [2, 1, 3], [3, 2, 1]], [[4, 6, 5], [5, 4, 6], [6, 5, 4]]]) """ c = np.atleast_1d(c) batch_shape, N = c.shape[:-1], c.shape[-1] # Need to use `prod(batch_shape)` instead of `-1` in case array has zero size c = c.reshape(math.prod(batch_shape), N) if batch_shape else c # Form an extended array that could be strided to give circulant version c_ext = np.concatenate((c[..., ::-1], c[..., :0:-1]), axis=-1).ravel() L = c.shape[-1] n = c_ext.strides[-1] if c.ndim == 1: A = as_strided(c_ext[L-1:], shape=(L, L), strides=(-n, n)) else: m = c.shape[0] A = as_strided(c_ext[L-1:], shape=(m, L, L), strides=(n*(2*L-1), -n, n)) return A.reshape(batch_shape + (N, N)).copy() def hankel(c, r=None): """ Construct a Hankel matrix. The Hankel matrix has constant anti-diagonals, with `c` as its first column and `r` as its last row. If the first element of `r` differs from the last element of `c`, the first element of `r` is replaced by the last element of `c` to ensure that anti-diagonals remain constant. If `r` is not given, then `r = zeros_like(c)` is assumed. Parameters ---------- c : array_like First column of the matrix. Whatever the actual shape of `c`, it will be converted to a 1-D array. r : array_like, optional Last row of the matrix. If None, ``r = zeros_like(c)`` is assumed. r[0] is ignored; the last row of the returned matrix is ``[c[-1], r[1:]]``. Whatever the actual shape of `r`, it will be converted to a 1-D array. Returns ------- A : (len(c), len(r)) ndarray The Hankel matrix. Dtype is the same as ``(c[0] + r[0]).dtype``. See Also -------- toeplitz : Toeplitz matrix circulant : circulant matrix Examples -------- >>> from scipy.linalg import hankel >>> hankel([1, 17, 99]) array([[ 1, 17, 99], [17, 99, 0], [99, 0, 0]]) >>> hankel([1,2,3,4], [4,7,7,8,9]) array([[1, 2, 3, 4, 7], [2, 3, 4, 7, 7], [3, 4, 7, 7, 8], [4, 7, 7, 8, 9]]) """ c = np.asarray(c).ravel() if r is None: r = np.zeros_like(c) else: r = np.asarray(r).ravel() # Form a 1-D array of values to be used in the matrix, containing `c` # followed by r[1:]. vals = np.concatenate((c, r[1:])) # Stride on concatenated array to get hankel matrix out_shp = len(c), len(r) n = vals.strides[0] return as_strided(vals, shape=out_shp, strides=(n, n)).copy() def hadamard(n, dtype=int): """ Construct an Hadamard matrix. Constructs an n-by-n Hadamard matrix, using Sylvester's construction. `n` must be a power of 2. Parameters ---------- n : int The order of the matrix. `n` must be a power of 2. dtype : dtype, optional The data type of the array to be constructed. Returns ------- H : (n, n) ndarray The Hadamard matrix. Notes ----- .. versionadded:: 0.8.0 Examples -------- >>> from scipy.linalg import hadamard >>> hadamard(2, dtype=complex) array([[ 1.+0.j, 1.+0.j], [ 1.+0.j, -1.-0.j]]) >>> hadamard(4) array([[ 1, 1, 1, 1], [ 1, -1, 1, -1], [ 1, 1, -1, -1], [ 1, -1, -1, 1]]) """ # This function is a slightly modified version of the # function contributed by Ivo in ticket #675. if n < 1: lg2 = 0 else: lg2 = int(math.log(n, 2)) if 2 ** lg2 != n: raise ValueError("n must be an positive integer, and n must be " "a power of 2") H = np.array([[1]], dtype=dtype) # Sylvester's construction for i in range(0, lg2): H = np.vstack((np.hstack((H, H)), np.hstack((H, -H)))) return H def leslie(f, s): """ Create a Leslie matrix. Given the length n array of fecundity coefficients `f` and the length n-1 array of survival coefficients `s`, return the associated Leslie matrix. Parameters ---------- f : (..., N,) array_like The "fecundity" coefficients. s : (..., N-1,) array_like The "survival" coefficients. The length of each slice of `s` (along the last axis) must be one less than the length of `f`, and it must be at least 1. Returns ------- L : (..., N, N) ndarray The array is zero except for the first row, which is `f`, and the first sub-diagonal, which is `s`. For 1-D input, the data-type of the array will be the data-type of ``f[0]+s[0]``. Notes ----- .. versionadded:: 0.8.0 The Leslie matrix is used to model discrete-time, age-structured population growth [1]_ [2]_. In a population with `n` age classes, two sets of parameters define a Leslie matrix: the `n` "fecundity coefficients", which give the number of offspring per-capita produced by each age class, and the `n` - 1 "survival coefficients", which give the per-capita survival rate of each age class. N-dimensional input are treated as a batches of coefficient arrays: each slice along the last axis of the input arrays is a 1-D coefficient array, and each slice along the last two dimensions of the output is the corresponding Leslie matrix. References ---------- .. [1] P. H. Leslie, On the use of matrices in certain population mathematics, Biometrika, Vol. 33, No. 3, 183--212 (Nov. 1945) .. [2] P. H. Leslie, Some further notes on the use of matrices in population mathematics, Biometrika, Vol. 35, No. 3/4, 213--245 (Dec. 1948) Examples -------- >>> from scipy.linalg import leslie >>> leslie([0.1, 2.0, 1.0, 0.1], [0.2, 0.8, 0.7]) array([[ 0.1, 2. , 1. , 0.1], [ 0.2, 0. , 0. , 0. ], [ 0. , 0.8, 0. , 0. ], [ 0. , 0. , 0.7, 0. ]]) """ f = np.atleast_1d(f) s = np.atleast_1d(s) if f.shape[-1] != s.shape[-1] + 1: raise ValueError("Incorrect lengths for f and s. The length of s along " "the last axis must be one less than the length of f.") if s.shape[-1] == 0: raise ValueError("The length of s must be at least 1.") n = f.shape[-1] if f.ndim > 1 or s.ndim > 1: from scipy.stats._resampling import _vectorize_statistic _leslie_nd = _vectorize_statistic(leslie) return np.moveaxis(_leslie_nd(f, s, axis=-1), [0, 1], [-2, -1]) tmp = f[0] + s[0] a = np.zeros((n, n), dtype=tmp.dtype) a[0] = f a[list(range(1, n)), list(range(0, n - 1))] = s return a def kron(a, b): """ Kronecker product. .. deprecated:: 1.15.0 `kron` has been deprecated in favour of `numpy.kron` and will be removed in SciPy 1.17.0. The result is the block matrix:: a[0,0]*b a[0,1]*b ... a[0,-1]*b a[1,0]*b a[1,1]*b ... a[1,-1]*b ... a[-1,0]*b a[-1,1]*b ... a[-1,-1]*b Parameters ---------- a : (M, N) ndarray Input array b : (P, Q) ndarray Input array Returns ------- A : (M*P, N*Q) ndarray Kronecker product of `a` and `b`. Examples -------- >>> from numpy import array >>> from scipy.linalg import kron >>> kron(array([[1,2],[3,4]]), array([[1,1,1]])) array([[1, 1, 1, 2, 2, 2], [3, 3, 3, 4, 4, 4]]) """ msg = ("`kron` has been deprecated in favour of `numpy.kron` in SciPy" " 1.15.0 and will be removed in SciPy 1.17.0.") warnings.warn(msg, DeprecationWarning, stacklevel=2) # accommodate empty arrays if a.size == 0 or b.size == 0: m = a.shape[0] * b.shape[0] n = a.shape[1] * b.shape[1] return np.empty_like(a, shape=(m, n)) if not a.flags['CONTIGUOUS']: a = np.reshape(a, a.shape) if not b.flags['CONTIGUOUS']: b = np.reshape(b, b.shape) o = np.outer(a, b) o = o.reshape(a.shape + b.shape) return np.concatenate(np.concatenate(o, axis=1), axis=1) def block_diag(*arrs): """ Create a block diagonal matrix from provided arrays. Given the inputs `A`, `B` and `C`, the output will have these arrays arranged on the diagonal:: [[A, 0, 0], [0, B, 0], [0, 0, C]] Parameters ---------- A, B, C, ... : array_like, up to 2-D Input arrays. A 1-D array or array_like sequence of length `n` is treated as a 2-D array with shape ``(1,n)``. Returns ------- D : ndarray Array with `A`, `B`, `C`, ... on the diagonal. `D` has the same dtype as `A`. Notes ----- If all the input arrays are square, the output is known as a block diagonal matrix. Empty sequences (i.e., array-likes of zero size) will not be ignored. Noteworthy, both [] and [[]] are treated as matrices with shape ``(1,0)``. Examples -------- >>> import numpy as np >>> from scipy.linalg import block_diag >>> A = [[1, 0], ... [0, 1]] >>> B = [[3, 4, 5], ... [6, 7, 8]] >>> C = [[7]] >>> P = np.zeros((2, 0), dtype='int32') >>> block_diag(A, B, C) array([[1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 0, 3, 4, 5, 0], [0, 0, 6, 7, 8, 0], [0, 0, 0, 0, 0, 7]]) >>> block_diag(A, P, B, C) array([[1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 3, 4, 5, 0], [0, 0, 6, 7, 8, 0], [0, 0, 0, 0, 0, 7]]) >>> block_diag(1.0, [2, 3], [[4, 5], [6, 7]]) array([[ 1., 0., 0., 0., 0.], [ 0., 2., 3., 0., 0.], [ 0., 0., 0., 4., 5.], [ 0., 0., 0., 6., 7.]]) """ if arrs == (): arrs = ([],) arrs = [np.atleast_2d(a) for a in arrs] bad_args = [k for k in range(len(arrs)) if arrs[k].ndim > 2] if bad_args: raise ValueError("arguments in the following positions " f"have dimension greater than 2: {bad_args}") shapes = np.array([a.shape for a in arrs]) out_dtype = np.result_type(*[arr.dtype for arr in arrs]) out = np.zeros(np.sum(shapes, axis=0), dtype=out_dtype) r, c = 0, 0 for i, (rr, cc) in enumerate(shapes): out[r:r + rr, c:c + cc] = arrs[i] r += rr c += cc return out def companion(a): """ Create a companion matrix. Create the companion matrix [1]_ associated with the polynomial whose coefficients are given in `a`. Parameters ---------- a : (..., N) array_like 1-D array of polynomial coefficients. The length of `a` must be at least two, and ``a[0]`` must not be zero. M-dimensional arrays are treated as a batch: each slice along the last axis is a 1-D array of polynomial coefficients. Returns ------- c : (..., N-1, N-1) ndarray For 1-D input, the first row of `c` is ``-a[1:]/a[0]``, and the first sub-diagonal is all ones. The data-type of the array is the same as the data-type of ``1.0*a[0]``. For batch input, each slice of shape ``(N-1, N-1)`` along the last two dimensions of the output corresponds with a slice of shape ``(N,)`` along the last dimension of the input. Raises ------ ValueError If any of the following are true: a) ``a.shape[-1] < 2``; b) ``a[..., 0] == 0``. Notes ----- .. versionadded:: 0.8.0 References ---------- .. [1] R. A. Horn & C. R. Johnson, *Matrix Analysis*. Cambridge, UK: Cambridge University Press, 1999, pp. 146-7. Examples -------- >>> from scipy.linalg import companion >>> companion([1, -10, 31, -30]) array([[ 10., -31., 30.], [ 1., 0., 0.], [ 0., 1., 0.]]) """ a = np.atleast_1d(a) n = a.shape[-1] if n < 2: raise ValueError("The length of `a` along the last axis must be at least 2.") if np.any(a[..., 0] == 0): raise ValueError("The first coefficient(s) of `a` (i.e. elements " "of `a[..., 0]`) must not be zero.") first_row = -a[..., 1:] / (1.0 * a[..., 0:1]) c = np.zeros(a.shape[:-1] + (n - 1, n - 1), dtype=first_row.dtype) c[..., 0, :] = first_row c[..., np.arange(1, n - 1), np.arange(0, n - 2)] = 1 return c def helmert(n, full=False): """ Create an Helmert matrix of order `n`. This has applications in statistics, compositional or simplicial analysis, and in Aitchison geometry. Parameters ---------- n : int The size of the array to create. full : bool, optional If True the (n, n) ndarray will be returned. Otherwise the submatrix that does not include the first row will be returned. Default: False. Returns ------- M : ndarray The Helmert matrix. The shape is (n, n) or (n-1, n) depending on the `full` argument. Examples -------- >>> from scipy.linalg import helmert >>> helmert(5, full=True) array([[ 0.4472136 , 0.4472136 , 0.4472136 , 0.4472136 , 0.4472136 ], [ 0.70710678, -0.70710678, 0. , 0. , 0. ], [ 0.40824829, 0.40824829, -0.81649658, 0. , 0. ], [ 0.28867513, 0.28867513, 0.28867513, -0.8660254 , 0. ], [ 0.2236068 , 0.2236068 , 0.2236068 , 0.2236068 , -0.89442719]]) """ H = np.tril(np.ones((n, n)), -1) - np.diag(np.arange(n)) d = np.arange(n) * np.arange(1, n+1) H[0] = 1 d[0] = n H_full = H / np.sqrt(d)[:, np.newaxis] if full: return H_full else: return H_full[1:] def hilbert(n): """ Create a Hilbert matrix of order `n`. Returns the `n` by `n` array with entries `h[i,j] = 1 / (i + j + 1)`. Parameters ---------- n : int The size of the array to create. Returns ------- h : (n, n) ndarray The Hilbert matrix. See Also -------- invhilbert : Compute the inverse of a Hilbert matrix. Notes ----- .. versionadded:: 0.10.0 Examples -------- >>> from scipy.linalg import hilbert >>> hilbert(3) array([[ 1. , 0.5 , 0.33333333], [ 0.5 , 0.33333333, 0.25 ], [ 0.33333333, 0.25 , 0.2 ]]) """ values = 1.0 / (1.0 + np.arange(2 * n - 1)) h = hankel(values[:n], r=values[n - 1:]) return h def invhilbert(n, exact=False): """ Compute the inverse of the Hilbert matrix of order `n`. The entries in the inverse of a Hilbert matrix are integers. When `n` is greater than 14, some entries in the inverse exceed the upper limit of 64 bit integers. The `exact` argument provides two options for dealing with these large integers. Parameters ---------- n : int The order of the Hilbert matrix. exact : bool, optional If False, the data type of the array that is returned is np.float64, and the array is an approximation of the inverse. If True, the array is the exact integer inverse array. To represent the exact inverse when n > 14, the returned array is an object array of long integers. For n <= 14, the exact inverse is returned as an array with data type np.int64. Returns ------- invh : (n, n) ndarray The data type of the array is np.float64 if `exact` is False. If `exact` is True, the data type is either np.int64 (for n <= 14) or object (for n > 14). In the latter case, the objects in the array will be long integers. See Also -------- hilbert : Create a Hilbert matrix. Notes ----- .. versionadded:: 0.10.0 Examples -------- >>> from scipy.linalg import invhilbert >>> invhilbert(4) array([[ 16., -120., 240., -140.], [ -120., 1200., -2700., 1680.], [ 240., -2700., 6480., -4200.], [ -140., 1680., -4200., 2800.]]) >>> invhilbert(4, exact=True) array([[ 16, -120, 240, -140], [ -120, 1200, -2700, 1680], [ 240, -2700, 6480, -4200], [ -140, 1680, -4200, 2800]], dtype=int64) >>> invhilbert(16)[7,7] 4.2475099528537506e+19 >>> invhilbert(16, exact=True)[7,7] 42475099528537378560 """ from scipy.special import comb if exact: if n > 14: dtype = object else: dtype = np.int64 else: dtype = np.float64 invh = np.empty((n, n), dtype=dtype) for i in range(n): for j in range(0, i + 1): s = i + j invh[i, j] = ((-1) ** s * (s + 1) * comb(n + i, n - j - 1, exact=exact) * comb(n + j, n - i - 1, exact=exact) * comb(s, i, exact=exact) ** 2) if i != j: invh[j, i] = invh[i, j] return invh def pascal(n, kind='symmetric', exact=True): """ Returns the n x n Pascal matrix. The Pascal matrix is a matrix containing the binomial coefficients as its elements. Parameters ---------- n : int The size of the matrix to create; that is, the result is an n x n matrix. kind : str, optional Must be one of 'symmetric', 'lower', or 'upper'. Default is 'symmetric'. exact : bool, optional If `exact` is True, the result is either an array of type numpy.uint64 (if n < 35) or an object array of Python long integers. If `exact` is False, the coefficients in the matrix are computed using `scipy.special.comb` with ``exact=False``. The result will be a floating point array, and the values in the array will not be the exact coefficients, but this version is much faster than ``exact=True``. Returns ------- p : (n, n) ndarray The Pascal matrix. See Also -------- invpascal Notes ----- See https://en.wikipedia.org/wiki/Pascal_matrix for more information about Pascal matrices. .. versionadded:: 0.11.0 Examples -------- >>> from scipy.linalg import pascal >>> pascal(4) array([[ 1, 1, 1, 1], [ 1, 2, 3, 4], [ 1, 3, 6, 10], [ 1, 4, 10, 20]], dtype=uint64) >>> pascal(4, kind='lower') array([[1, 0, 0, 0], [1, 1, 0, 0], [1, 2, 1, 0], [1, 3, 3, 1]], dtype=uint64) >>> pascal(50)[-1, -1] 25477612258980856902730428600 >>> from scipy.special import comb >>> comb(98, 49, exact=True) 25477612258980856902730428600 """ from scipy.special import comb if kind not in ['symmetric', 'lower', 'upper']: raise ValueError("kind must be 'symmetric', 'lower', or 'upper'") if exact: if n >= 35: L_n = np.empty((n, n), dtype=object) L_n.fill(0) else: L_n = np.zeros((n, n), dtype=np.uint64) for i in range(n): for j in range(i + 1): L_n[i, j] = comb(i, j, exact=True) else: L_n = comb(*np.ogrid[:n, :n]) if kind == 'lower': p = L_n elif kind == 'upper': p = L_n.T else: p = np.dot(L_n, L_n.T) return p def invpascal(n, kind='symmetric', exact=True): """ Returns the inverse of the n x n Pascal matrix. The Pascal matrix is a matrix containing the binomial coefficients as its elements. Parameters ---------- n : int The size of the matrix to create; that is, the result is an n x n matrix. kind : str, optional Must be one of 'symmetric', 'lower', or 'upper'. Default is 'symmetric'. exact : bool, optional If `exact` is True, the result is either an array of type ``numpy.int64`` (if `n` <= 35) or an object array of Python integers. If `exact` is False, the coefficients in the matrix are computed using `scipy.special.comb` with `exact=False`. The result will be a floating point array, and for large `n`, the values in the array will not be the exact coefficients. Returns ------- invp : (n, n) ndarray The inverse of the Pascal matrix. See Also -------- pascal Notes ----- .. versionadded:: 0.16.0 References ---------- .. [1] "Pascal matrix", https://en.wikipedia.org/wiki/Pascal_matrix .. [2] Cohen, A. M., "The inverse of a Pascal matrix", Mathematical Gazette, 59(408), pp. 111-112, 1975. Examples -------- >>> from scipy.linalg import invpascal, pascal >>> invp = invpascal(5) >>> invp array([[ 5, -10, 10, -5, 1], [-10, 30, -35, 19, -4], [ 10, -35, 46, -27, 6], [ -5, 19, -27, 17, -4], [ 1, -4, 6, -4, 1]]) >>> p = pascal(5) >>> p.dot(invp) array([[ 1., 0., 0., 0., 0.], [ 0., 1., 0., 0., 0.], [ 0., 0., 1., 0., 0.], [ 0., 0., 0., 1., 0.], [ 0., 0., 0., 0., 1.]]) An example of the use of `kind` and `exact`: >>> invpascal(5, kind='lower', exact=False) array([[ 1., -0., 0., -0., 0.], [-1., 1., -0., 0., -0.], [ 1., -2., 1., -0., 0.], [-1., 3., -3., 1., -0.], [ 1., -4., 6., -4., 1.]]) """ from scipy.special import comb if kind not in ['symmetric', 'lower', 'upper']: raise ValueError("'kind' must be 'symmetric', 'lower' or 'upper'.") if kind == 'symmetric': if exact: if n > 34: dt = object else: dt = np.int64 else: dt = np.float64 invp = np.empty((n, n), dtype=dt) for i in range(n): for j in range(0, i + 1): v = 0 for k in range(n - i): v += comb(i + k, k, exact=exact) * comb(i + k, i + k - j, exact=exact) invp[i, j] = (-1)**(i - j) * v if i != j: invp[j, i] = invp[i, j] else: # For the 'lower' and 'upper' cases, we computer the inverse by # changing the sign of every other diagonal of the pascal matrix. invp = pascal(n, kind=kind, exact=exact) if invp.dtype == np.uint64: # This cast from np.uint64 to int64 OK, because if `kind` is not # "symmetric", the values in invp are all much less than 2**63. invp = invp.view(np.int64) # The toeplitz matrix has alternating bands of 1 and -1. invp *= toeplitz((-1)**np.arange(n)).astype(invp.dtype) return invp def dft(n, scale=None): """ Discrete Fourier transform matrix. Create the matrix that computes the discrete Fourier transform of a sequence [1]_. The nth primitive root of unity used to generate the matrix is exp(-2*pi*i/n), where i = sqrt(-1). Parameters ---------- n : int Size the matrix to create. scale : str, optional Must be None, 'sqrtn', or 'n'. If `scale` is 'sqrtn', the matrix is divided by `sqrt(n)`. If `scale` is 'n', the matrix is divided by `n`. If `scale` is None (the default), the matrix is not normalized, and the return value is simply the Vandermonde matrix of the roots of unity. Returns ------- m : (n, n) ndarray The DFT matrix. Notes ----- When `scale` is None, multiplying a vector by the matrix returned by `dft` is mathematically equivalent to (but much less efficient than) the calculation performed by `scipy.fft.fft`. .. versionadded:: 0.14.0 References ---------- .. [1] "DFT matrix", https://en.wikipedia.org/wiki/DFT_matrix Examples -------- >>> import numpy as np >>> from scipy.linalg import dft >>> np.set_printoptions(precision=2, suppress=True) # for compact output >>> m = dft(5) >>> m array([[ 1. +0.j , 1. +0.j , 1. +0.j , 1. +0.j , 1. +0.j ], [ 1. +0.j , 0.31-0.95j, -0.81-0.59j, -0.81+0.59j, 0.31+0.95j], [ 1. +0.j , -0.81-0.59j, 0.31+0.95j, 0.31-0.95j, -0.81+0.59j], [ 1. +0.j , -0.81+0.59j, 0.31-0.95j, 0.31+0.95j, -0.81-0.59j], [ 1. +0.j , 0.31+0.95j, -0.81+0.59j, -0.81-0.59j, 0.31-0.95j]]) >>> x = np.array([1, 2, 3, 0, 3]) >>> m @ x # Compute the DFT of x array([ 9. +0.j , 0.12-0.81j, -2.12+3.44j, -2.12-3.44j, 0.12+0.81j]) Verify that ``m @ x`` is the same as ``fft(x)``. >>> from scipy.fft import fft >>> fft(x) # Same result as m @ x array([ 9. +0.j , 0.12-0.81j, -2.12+3.44j, -2.12-3.44j, 0.12+0.81j]) """ if scale not in [None, 'sqrtn', 'n']: raise ValueError("scale must be None, 'sqrtn', or 'n'; " f"{scale!r} is not valid.") omegas = np.exp(-2j * np.pi * np.arange(n) / n).reshape(-1, 1) m = omegas ** np.arange(n) if scale == 'sqrtn': m /= math.sqrt(n) elif scale == 'n': m /= n return m def fiedler(a): """Returns a symmetric Fiedler matrix Given an sequence of numbers `a`, Fiedler matrices have the structure ``F[i, j] = np.abs(a[i] - a[j])``, and hence zero diagonals and nonnegative entries. A Fiedler matrix has a dominant positive eigenvalue and other eigenvalues are negative. Although not valid generally, for certain inputs, the inverse and the determinant can be derived explicitly as given in [1]_. Parameters ---------- a : (..., n,) array_like Coefficient array. N-dimensional arrays are treated as a batch: each slice along the last axis is a 1-D coefficient array. Returns ------- F : (..., n, n) ndarray Fiedler matrix. For batch input, each slice of shape ``(n, n)`` along the last two dimensions of the output corresponds with a slice of shape ``(n,)`` along the last dimension of the input. See Also -------- circulant, toeplitz Notes ----- .. versionadded:: 1.3.0 References ---------- .. [1] J. Todd, "Basic Numerical Mathematics: Vol.2 : Numerical Algebra", 1977, Birkhauser, :doi:`10.1007/978-3-0348-7286-7` Examples -------- >>> import numpy as np >>> from scipy.linalg import det, inv, fiedler >>> a = [1, 4, 12, 45, 77] >>> n = len(a) >>> A = fiedler(a) >>> A array([[ 0, 3, 11, 44, 76], [ 3, 0, 8, 41, 73], [11, 8, 0, 33, 65], [44, 41, 33, 0, 32], [76, 73, 65, 32, 0]]) The explicit formulas for determinant and inverse seem to hold only for monotonically increasing/decreasing arrays. Note the tridiagonal structure and the corners. >>> Ai = inv(A) >>> Ai[np.abs(Ai) < 1e-12] = 0. # cleanup the numerical noise for display >>> Ai array([[-0.16008772, 0.16666667, 0. , 0. , 0.00657895], [ 0.16666667, -0.22916667, 0.0625 , 0. , 0. ], [ 0. , 0.0625 , -0.07765152, 0.01515152, 0. ], [ 0. , 0. , 0.01515152, -0.03077652, 0.015625 ], [ 0.00657895, 0. , 0. , 0.015625 , -0.00904605]]) >>> det(A) 15409151.999999998 >>> (-1)**(n-1) * 2**(n-2) * np.diff(a).prod() * (a[-1] - a[0]) 15409152 """ a = np.atleast_1d(a) if a.ndim > 1: return np.apply_along_axis(fiedler, -1, a) if a.size == 0: return np.array([], dtype=float) elif a.size == 1: return np.array([[0.]]) else: return np.abs(a[:, None] - a) def fiedler_companion(a): """ Returns a Fiedler companion matrix Given a polynomial coefficient array ``a``, this function forms a pentadiagonal matrix with a special structure whose eigenvalues coincides with the roots of ``a``. Parameters ---------- a : (..., N) array_like 1-D array of polynomial coefficients in descending order with a nonzero leading coefficient. For ``N < 2``, an empty array is returned. N-dimensional arrays are treated as a batch: each slice along the last axis is a 1-D array of polynomial coefficients. Returns ------- c : (..., N-1, N-1) ndarray Resulting companion matrix. For batch input, each slice of shape ``(N-1, N-1)`` along the last two dimensions of the output corresponds with a slice of shape ``(N,)`` along the last dimension of the input. See Also -------- companion Notes ----- Similar to `companion`, each leading coefficient along the last axis of the input should be nonzero. If the leading coefficient is not 1, other coefficients are rescaled before the array generation. To avoid numerical issues, it is best to provide a monic polynomial. .. versionadded:: 1.3.0 References ---------- .. [1] M. Fiedler, " A note on companion matrices", Linear Algebra and its Applications, 2003, :doi:`10.1016/S0024-3795(03)00548-2` Examples -------- >>> import numpy as np >>> from scipy.linalg import fiedler_companion, eigvals >>> p = np.poly(np.arange(1, 9, 2)) # [1., -16., 86., -176., 105.] >>> fc = fiedler_companion(p) >>> fc array([[ 16., -86., 1., 0.], [ 1., 0., 0., 0.], [ 0., 176., 0., -105.], [ 0., 1., 0., 0.]]) >>> eigvals(fc) array([7.+0.j, 5.+0.j, 3.+0.j, 1.+0.j]) """ a = np.atleast_1d(a) if a.ndim > 1: return np.apply_along_axis(fiedler_companion, -1, a) if a.size <= 2: if a.size == 2: return np.array([[-(a/a[0])[-1]]]) return np.array([], dtype=a.dtype) if a[0] == 0.: raise ValueError('Leading coefficient is zero.') a = a/a[0] n = a.size - 1 c = np.zeros((n, n), dtype=a.dtype) # subdiagonals c[range(3, n, 2), range(1, n-2, 2)] = 1. c[range(2, n, 2), range(1, n-1, 2)] = -a[3::2] # superdiagonals c[range(0, n-2, 2), range(2, n, 2)] = 1. c[range(0, n-1, 2), range(1, n, 2)] = -a[2::2] c[[0, 1], 0] = [-a[1], 1] return c def convolution_matrix(a, n, mode='full'): """ Construct a convolution matrix. Constructs the Toeplitz matrix representing one-dimensional convolution [1]_. See the notes below for details. Parameters ---------- a : (..., m) array_like The 1-D array to convolve. N-dimensional arrays are treated as a batch: each slice along the last axis is a 1-D array to convolve. n : int The number of columns in the resulting matrix. It gives the length of the input to be convolved with `a`. This is analogous to the length of `v` in ``numpy.convolve(a, v)``. mode : str This is analogous to `mode` in ``numpy.convolve(v, a, mode)``. It must be one of ('full', 'valid', 'same'). See below for how `mode` determines the shape of the result. Returns ------- A : (..., k, n) ndarray The convolution matrix whose row count `k` depends on `mode`:: ======= ========================= mode k ======= ========================= 'full' m + n -1 'same' max(m, n) 'valid' max(m, n) - min(m, n) + 1 ======= ========================= For batch input, each slice of shape ``(k, n)`` along the last two dimensions of the output corresponds with a slice of shape ``(m,)`` along the last dimension of the input. See Also -------- toeplitz : Toeplitz matrix Notes ----- The code:: A = convolution_matrix(a, n, mode) creates a Toeplitz matrix `A` such that ``A @ v`` is equivalent to using ``convolve(a, v, mode)``. The returned array always has `n` columns. The number of rows depends on the specified `mode`, as explained above. In the default 'full' mode, the entries of `A` are given by:: A[i, j] == (a[i-j] if (0 <= (i-j) < m) else 0) where ``m = len(a)``. Suppose, for example, the input array is ``[x, y, z]``. The convolution matrix has the form:: [x, 0, 0, ..., 0, 0] [y, x, 0, ..., 0, 0] [z, y, x, ..., 0, 0] ... [0, 0, 0, ..., x, 0] [0, 0, 0, ..., y, x] [0, 0, 0, ..., z, y] [0, 0, 0, ..., 0, z] In 'valid' mode, the entries of `A` are given by:: A[i, j] == (a[i-j+m-1] if (0 <= (i-j+m-1) < m) else 0) This corresponds to a matrix whose rows are the subset of those from the 'full' case where all the coefficients in `a` are contained in the row. For input ``[x, y, z]``, this array looks like:: [z, y, x, 0, 0, ..., 0, 0, 0] [0, z, y, x, 0, ..., 0, 0, 0] [0, 0, z, y, x, ..., 0, 0, 0] ... [0, 0, 0, 0, 0, ..., x, 0, 0] [0, 0, 0, 0, 0, ..., y, x, 0] [0, 0, 0, 0, 0, ..., z, y, x] In the 'same' mode, the entries of `A` are given by:: d = (m - 1) // 2 A[i, j] == (a[i-j+d] if (0 <= (i-j+d) < m) else 0) The typical application of the 'same' mode is when one has a signal of length `n` (with `n` greater than ``len(a)``), and the desired output is a filtered signal that is still of length `n`. For input ``[x, y, z]``, this array looks like:: [y, x, 0, 0, ..., 0, 0, 0] [z, y, x, 0, ..., 0, 0, 0] [0, z, y, x, ..., 0, 0, 0] [0, 0, z, y, ..., 0, 0, 0] ... [0, 0, 0, 0, ..., y, x, 0] [0, 0, 0, 0, ..., z, y, x] [0, 0, 0, 0, ..., 0, z, y] .. versionadded:: 1.5.0 References ---------- .. [1] "Convolution", https://en.wikipedia.org/wiki/Convolution Examples -------- >>> import numpy as np >>> from scipy.linalg import convolution_matrix >>> A = convolution_matrix([-1, 4, -2], 5, mode='same') >>> A array([[ 4, -1, 0, 0, 0], [-2, 4, -1, 0, 0], [ 0, -2, 4, -1, 0], [ 0, 0, -2, 4, -1], [ 0, 0, 0, -2, 4]]) Compare multiplication by `A` with the use of `numpy.convolve`. >>> x = np.array([1, 2, 0, -3, 0.5]) >>> A @ x array([ 2. , 6. , -1. , -12.5, 8. ]) Verify that ``A @ x`` produced the same result as applying the convolution function. >>> np.convolve([-1, 4, -2], x, mode='same') array([ 2. , 6. , -1. , -12.5, 8. ]) For comparison to the case ``mode='same'`` shown above, here are the matrices produced by ``mode='full'`` and ``mode='valid'`` for the same coefficients and size. >>> convolution_matrix([-1, 4, -2], 5, mode='full') array([[-1, 0, 0, 0, 0], [ 4, -1, 0, 0, 0], [-2, 4, -1, 0, 0], [ 0, -2, 4, -1, 0], [ 0, 0, -2, 4, -1], [ 0, 0, 0, -2, 4], [ 0, 0, 0, 0, -2]]) >>> convolution_matrix([-1, 4, -2], 5, mode='valid') array([[-2, 4, -1, 0, 0], [ 0, -2, 4, -1, 0], [ 0, 0, -2, 4, -1]]) """ if n <= 0: raise ValueError('n must be a positive integer.') a = np.asarray(a) if a.size == 0: raise ValueError('len(a) must be at least 1.') if mode not in ('full', 'valid', 'same'): raise ValueError( "'mode' argument must be one of ('full', 'valid', 'same')") if a.ndim > 1: return np.apply_along_axis(lambda a: convolution_matrix(a, n, mode), -1, a) # create zero padded versions of the array az = np.pad(a, (0, n-1), 'constant') raz = np.pad(a[::-1], (0, n-1), 'constant') if mode == 'same': trim = min(n, len(a)) - 1 tb = trim//2 te = trim - tb col0 = az[tb:len(az)-te] row0 = raz[-n-tb:len(raz)-tb] elif mode == 'valid': tb = min(n, len(a)) - 1 te = tb col0 = az[tb:len(az)-te] row0 = raz[-n-tb:len(raz)-tb] else: # 'full' col0 = az row0 = raz[-n:] return toeplitz(col0, row0)