from collections.abc import Callable from typing import Any, Literal, TypeAlias, TypeVar, overload import numpy as np from numpy import dtype, float32, float64, int64 from numpy._typing import ( ArrayLike, DTypeLike, NDArray, _ArrayLikeFloat_co, _ArrayLikeInt_co, _BoolCodes, _DoubleCodes, _DTypeLike, _DTypeLikeBool, _Float32Codes, _Float64Codes, _FloatLike_co, _Int8Codes, _Int16Codes, _Int32Codes, _Int64Codes, _IntPCodes, _ShapeLike, _SingleCodes, _SupportsDType, _UInt8Codes, _UInt16Codes, _UInt32Codes, _UInt64Codes, _UIntPCodes, ) from numpy.random import BitGenerator, RandomState, SeedSequence _IntegerT = TypeVar("_IntegerT", bound=np.integer) _DTypeLikeFloat32: TypeAlias = ( dtype[float32] | _SupportsDType[dtype[float32]] | type[float32] | _Float32Codes | _SingleCodes ) _DTypeLikeFloat64: TypeAlias = ( dtype[float64] | _SupportsDType[dtype[float64]] | type[float] | type[float64] | _Float64Codes | _DoubleCodes ) class Generator: def __init__(self, bit_generator: BitGenerator) -> None: ... def __repr__(self) -> str: ... def __str__(self) -> str: ... def __getstate__(self) -> None: ... def __setstate__(self, state: dict[str, Any] | None) -> None: ... def __reduce__(self) -> tuple[ Callable[[BitGenerator], Generator], tuple[BitGenerator], None]: ... @property def bit_generator(self) -> BitGenerator: ... def spawn(self, n_children: int) -> list[Generator]: ... def bytes(self, length: int) -> bytes: ... @overload def standard_normal( # type: ignore[misc] self, size: None = ..., dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ..., out: None = ..., ) -> float: ... @overload def standard_normal( # type: ignore[misc] self, size: _ShapeLike = ..., ) -> NDArray[float64]: ... @overload def standard_normal( # type: ignore[misc] self, *, out: NDArray[float64] = ..., ) -> NDArray[float64]: ... @overload def standard_normal( # type: ignore[misc] self, size: _ShapeLike = ..., dtype: _DTypeLikeFloat32 = ..., out: None | NDArray[float32] = ..., ) -> NDArray[float32]: ... @overload def standard_normal( # type: ignore[misc] self, size: _ShapeLike = ..., dtype: _DTypeLikeFloat64 = ..., out: None | NDArray[float64] = ..., ) -> NDArray[float64]: ... @overload def permutation(self, x: int, axis: int = ...) -> NDArray[int64]: ... @overload def permutation(self, x: ArrayLike, axis: int = ...) -> NDArray[Any]: ... @overload def standard_exponential( # type: ignore[misc] self, size: None = ..., dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ..., method: Literal["zig", "inv"] = ..., out: None = ..., ) -> float: ... @overload def standard_exponential( self, size: _ShapeLike = ..., ) -> NDArray[float64]: ... @overload def standard_exponential( self, *, out: NDArray[float64] = ..., ) -> NDArray[float64]: ... @overload def standard_exponential( self, size: _ShapeLike = ..., *, method: Literal["zig", "inv"] = ..., out: None | NDArray[float64] = ..., ) -> NDArray[float64]: ... @overload def standard_exponential( self, size: _ShapeLike = ..., dtype: _DTypeLikeFloat32 = ..., method: Literal["zig", "inv"] = ..., out: None | NDArray[float32] = ..., ) -> NDArray[float32]: ... @overload def standard_exponential( self, size: _ShapeLike = ..., dtype: _DTypeLikeFloat64 = ..., method: Literal["zig", "inv"] = ..., out: None | NDArray[float64] = ..., ) -> NDArray[float64]: ... @overload def random( # type: ignore[misc] self, size: None = ..., dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ..., out: None = ..., ) -> float: ... @overload def random( self, *, out: NDArray[float64] = ..., ) -> NDArray[float64]: ... @overload def random( self, size: _ShapeLike = ..., *, out: None | NDArray[float64] = ..., ) -> NDArray[float64]: ... @overload def random( self, size: _ShapeLike = ..., dtype: _DTypeLikeFloat32 = ..., out: None | NDArray[float32] = ..., ) -> NDArray[float32]: ... @overload def random( self, size: _ShapeLike = ..., dtype: _DTypeLikeFloat64 = ..., out: None | NDArray[float64] = ..., ) -> NDArray[float64]: ... @overload def beta( self, a: _FloatLike_co, b: _FloatLike_co, size: None = ..., ) -> float: ... # type: ignore[misc] @overload def beta( self, a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, size: None | _ShapeLike = ... ) -> NDArray[float64]: ... @overload def exponential(self, scale: _FloatLike_co = ..., size: None = ...) -> float: ... # type: ignore[misc] @overload def exponential(self, scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...) -> NDArray[float64]: ... # @overload def integers( self, low: int, high: int | None = None, size: None = None, dtype: _DTypeLike[np.int64] | _Int64Codes = ..., endpoint: bool = False, ) -> np.int64: ... @overload def integers( self, low: int, high: int | None = None, size: None = None, *, dtype: type[bool], endpoint: bool = False, ) -> bool: ... @overload def integers( self, low: int, high: int | None = None, size: None = None, *, dtype: type[int], endpoint: bool = False, ) -> int: ... @overload def integers( self, low: int, high: int | None = None, size: None = None, *, dtype: _DTypeLike[np.bool] | _BoolCodes, endpoint: bool = False, ) -> np.bool: ... @overload def integers( self, low: int, high: int | None = None, size: None = None, *, dtype: _DTypeLike[_IntegerT], endpoint: bool = False, ) -> _IntegerT: ... @overload def integers( self, low: _ArrayLikeInt_co, high: _ArrayLikeInt_co | None = None, size: _ShapeLike | None = None, dtype: _DTypeLike[np.int64] | _Int64Codes = ..., endpoint: bool = False, ) -> NDArray[np.int64]: ... @overload def integers( self, low: _ArrayLikeInt_co, high: _ArrayLikeInt_co | None = None, size: _ShapeLike | None = None, *, dtype: _DTypeLikeBool, endpoint: bool = False, ) -> NDArray[np.bool]: ... @overload def integers( self, low: _ArrayLikeInt_co, high: _ArrayLikeInt_co | None = None, size: _ShapeLike | None = None, *, dtype: _DTypeLike[_IntegerT], endpoint: bool = False, ) -> NDArray[_IntegerT]: ... @overload def integers( self, low: int, high: int | None = None, size: None = None, *, dtype: _Int8Codes, endpoint: bool = False, ) -> np.int8: ... @overload def integers( self, low: _ArrayLikeInt_co, high: _ArrayLikeInt_co | None = None, size: _ShapeLike | None = None, *, dtype: _Int8Codes, endpoint: bool = False, ) -> NDArray[np.int8]: ... @overload def integers( self, low: int, high: int | None = None, size: None = None, *, dtype: _UInt8Codes, endpoint: bool = False, ) -> np.uint8: ... @overload def integers( self, low: _ArrayLikeInt_co, high: _ArrayLikeInt_co | None = None, size: _ShapeLike | None = None, *, dtype: _UInt8Codes, endpoint: bool = False, ) -> NDArray[np.uint8]: ... @overload def integers( self, low: int, high: int | None = None, size: None = None, *, dtype: _Int16Codes, endpoint: bool = False, ) -> np.int16: ... @overload def integers( self, low: _ArrayLikeInt_co, high: _ArrayLikeInt_co | None = None, size: _ShapeLike | None = None, *, dtype: _Int16Codes, endpoint: bool = False, ) -> NDArray[np.int16]: ... @overload def integers( self, low: int, high: int | None = None, size: None = None, *, dtype: _UInt16Codes, endpoint: bool = False, ) -> np.uint16: ... @overload def integers( self, low: _ArrayLikeInt_co, high: _ArrayLikeInt_co | None = None, size: _ShapeLike | None = None, *, dtype: _UInt16Codes, endpoint: bool = False, ) -> NDArray[np.uint16]: ... @overload def integers( self, low: int, high: int | None = None, size: None = None, *, dtype: _Int32Codes, endpoint: bool = False, ) -> np.int32: ... @overload def integers( self, low: _ArrayLikeInt_co, high: _ArrayLikeInt_co | None = None, size: _ShapeLike | None = None, *, dtype: _Int32Codes, endpoint: bool = False, ) -> NDArray[np.int32]: ... @overload def integers( self, low: int, high: int | None = None, size: None = None, *, dtype: _UInt32Codes, endpoint: bool = False, ) -> np.uint32: ... @overload def integers( self, low: _ArrayLikeInt_co, high: _ArrayLikeInt_co | None = None, size: _ShapeLike | None = None, *, dtype: _UInt32Codes, endpoint: bool = False, ) -> NDArray[np.uint32]: ... @overload def integers( self, low: int, high: int | None = None, size: None = None, *, dtype: _UInt64Codes, endpoint: bool = False, ) -> np.uint64: ... @overload def integers( self, low: _ArrayLikeInt_co, high: _ArrayLikeInt_co | None = None, size: _ShapeLike | None = None, *, dtype: _UInt64Codes, endpoint: bool = False, ) -> NDArray[np.uint64]: ... @overload def integers( self, low: int, high: int | None = None, size: None = None, *, dtype: _IntPCodes, endpoint: bool = False, ) -> np.intp: ... @overload def integers( self, low: _ArrayLikeInt_co, high: _ArrayLikeInt_co | None = None, size: _ShapeLike | None = None, *, dtype: _IntPCodes, endpoint: bool = False, ) -> NDArray[np.intp]: ... @overload def integers( self, low: int, high: int | None = None, size: None = None, *, dtype: _UIntPCodes, endpoint: bool = False, ) -> np.uintp: ... @overload def integers( self, low: _ArrayLikeInt_co, high: _ArrayLikeInt_co | None = None, size: _ShapeLike | None = None, *, dtype: _UIntPCodes, endpoint: bool = False, ) -> NDArray[np.uintp]: ... @overload def integers( self, low: int, high: int | None = None, size: None = None, dtype: DTypeLike = ..., endpoint: bool = False, ) -> Any: ... @overload def integers( self, low: _ArrayLikeInt_co, high: _ArrayLikeInt_co | None = None, size: _ShapeLike | None = None, dtype: DTypeLike = ..., endpoint: bool = False, ) -> NDArray[Any]: ... # TODO: Use a TypeVar _T here to get away from Any output? # Should be int->NDArray[int64], ArrayLike[_T] -> _T | NDArray[Any] @overload def choice( self, a: int, size: None = ..., replace: bool = ..., p: None | _ArrayLikeFloat_co = ..., axis: int = ..., shuffle: bool = ..., ) -> int: ... @overload def choice( self, a: int, size: _ShapeLike = ..., replace: bool = ..., p: None | _ArrayLikeFloat_co = ..., axis: int = ..., shuffle: bool = ..., ) -> NDArray[int64]: ... @overload def choice( self, a: ArrayLike, size: None = ..., replace: bool = ..., p: None | _ArrayLikeFloat_co = ..., axis: int = ..., shuffle: bool = ..., ) -> Any: ... @overload def choice( self, a: ArrayLike, size: _ShapeLike = ..., replace: bool = ..., p: None | _ArrayLikeFloat_co = ..., axis: int = ..., shuffle: bool = ..., ) -> NDArray[Any]: ... @overload def uniform( self, low: _FloatLike_co = ..., high: _FloatLike_co = ..., size: None = ..., ) -> float: ... # type: ignore[misc] @overload def uniform( self, low: _ArrayLikeFloat_co = ..., high: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ..., ) -> NDArray[float64]: ... @overload def normal( self, loc: _FloatLike_co = ..., scale: _FloatLike_co = ..., size: None = ..., ) -> float: ... # type: ignore[misc] @overload def normal( self, loc: _ArrayLikeFloat_co = ..., scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ..., ) -> NDArray[float64]: ... @overload def standard_gamma( # type: ignore[misc] self, shape: _FloatLike_co, size: None = ..., dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ..., out: None = ..., ) -> float: ... @overload def standard_gamma( self, shape: _ArrayLikeFloat_co, size: None | _ShapeLike = ..., ) -> NDArray[float64]: ... @overload def standard_gamma( self, shape: _ArrayLikeFloat_co, *, out: NDArray[float64] = ..., ) -> NDArray[float64]: ... @overload def standard_gamma( self, shape: _ArrayLikeFloat_co, size: None | _ShapeLike = ..., dtype: _DTypeLikeFloat32 = ..., out: None | NDArray[float32] = ..., ) -> NDArray[float32]: ... @overload def standard_gamma( self, shape: _ArrayLikeFloat_co, size: None | _ShapeLike = ..., dtype: _DTypeLikeFloat64 = ..., out: None | NDArray[float64] = ..., ) -> NDArray[float64]: ... @overload def gamma( self, shape: _FloatLike_co, scale: _FloatLike_co = ..., size: None = ... ) -> float: ... # type: ignore[misc] @overload def gamma( self, shape: _ArrayLikeFloat_co, scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ..., ) -> NDArray[float64]: ... @overload def f( self, dfnum: _FloatLike_co, dfden: _FloatLike_co, size: None = ... ) -> float: ... # type: ignore[misc] @overload def f( self, dfnum: _ArrayLikeFloat_co, dfden: _ArrayLikeFloat_co, size: None | _ShapeLike = ... ) -> NDArray[float64]: ... @overload def noncentral_f( self, dfnum: _FloatLike_co, dfden: _FloatLike_co, nonc: _FloatLike_co, size: None = ... ) -> float: ... # type: ignore[misc] @overload def noncentral_f( self, dfnum: _ArrayLikeFloat_co, dfden: _ArrayLikeFloat_co, nonc: _ArrayLikeFloat_co, size: None | _ShapeLike = ..., ) -> NDArray[float64]: ... @overload def chisquare(self, df: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc] @overload def chisquare( self, df: _ArrayLikeFloat_co, size: None | _ShapeLike = ... ) -> NDArray[float64]: ... @overload def noncentral_chisquare( self, df: _FloatLike_co, nonc: _FloatLike_co, size: None = ... ) -> float: ... # type: ignore[misc] @overload def noncentral_chisquare( self, df: _ArrayLikeFloat_co, nonc: _ArrayLikeFloat_co, size: None | _ShapeLike = ... ) -> NDArray[float64]: ... @overload def standard_t(self, df: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc] @overload def standard_t( self, df: _ArrayLikeFloat_co, size: None = ... ) -> NDArray[float64]: ... @overload def standard_t( self, df: _ArrayLikeFloat_co, size: _ShapeLike = ... ) -> NDArray[float64]: ... @overload def vonmises( self, mu: _FloatLike_co, kappa: _FloatLike_co, size: None = ... ) -> float: ... # type: ignore[misc] @overload def vonmises( self, mu: _ArrayLikeFloat_co, kappa: _ArrayLikeFloat_co, size: None | _ShapeLike = ... ) -> NDArray[float64]: ... @overload def pareto(self, a: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc] @overload def pareto( self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ... ) -> NDArray[float64]: ... @overload def weibull(self, a: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc] @overload def weibull( self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ... ) -> NDArray[float64]: ... @overload def power(self, a: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc] @overload def power( self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ... ) -> NDArray[float64]: ... @overload def standard_cauchy(self, size: None = ...) -> float: ... # type: ignore[misc] @overload def standard_cauchy(self, size: _ShapeLike = ...) -> NDArray[float64]: ... @overload def laplace( self, loc: _FloatLike_co = ..., scale: _FloatLike_co = ..., size: None = ..., ) -> float: ... # type: ignore[misc] @overload def laplace( self, loc: _ArrayLikeFloat_co = ..., scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ..., ) -> NDArray[float64]: ... @overload def gumbel( self, loc: _FloatLike_co = ..., scale: _FloatLike_co = ..., size: None = ..., ) -> float: ... # type: ignore[misc] @overload def gumbel( self, loc: _ArrayLikeFloat_co = ..., scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ..., ) -> NDArray[float64]: ... @overload def logistic( self, loc: _FloatLike_co = ..., scale: _FloatLike_co = ..., size: None = ..., ) -> float: ... # type: ignore[misc] @overload def logistic( self, loc: _ArrayLikeFloat_co = ..., scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ..., ) -> NDArray[float64]: ... @overload def lognormal( self, mean: _FloatLike_co = ..., sigma: _FloatLike_co = ..., size: None = ..., ) -> float: ... # type: ignore[misc] @overload def lognormal( self, mean: _ArrayLikeFloat_co = ..., sigma: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ..., ) -> NDArray[float64]: ... @overload def rayleigh(self, scale: _FloatLike_co = ..., size: None = ...) -> float: ... # type: ignore[misc] @overload def rayleigh( self, scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ... ) -> NDArray[float64]: ... @overload def wald( self, mean: _FloatLike_co, scale: _FloatLike_co, size: None = ... ) -> float: ... # type: ignore[misc] @overload def wald( self, mean: _ArrayLikeFloat_co, scale: _ArrayLikeFloat_co, size: None | _ShapeLike = ... ) -> NDArray[float64]: ... @overload def triangular( self, left: _FloatLike_co, mode: _FloatLike_co, right: _FloatLike_co, size: None = ..., ) -> float: ... # type: ignore[misc] @overload def triangular( self, left: _ArrayLikeFloat_co, mode: _ArrayLikeFloat_co, right: _ArrayLikeFloat_co, size: None | _ShapeLike = ..., ) -> NDArray[float64]: ... @overload def binomial(self, n: int, p: _FloatLike_co, size: None = ...) -> int: ... # type: ignore[misc] @overload def binomial( self, n: _ArrayLikeInt_co, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ... ) -> NDArray[int64]: ... @overload def negative_binomial( self, n: _FloatLike_co, p: _FloatLike_co, size: None = ... ) -> int: ... # type: ignore[misc] @overload def negative_binomial( self, n: _ArrayLikeFloat_co, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ... ) -> NDArray[int64]: ... @overload def poisson(self, lam: _FloatLike_co = ..., size: None = ...) -> int: ... # type: ignore[misc] @overload def poisson( self, lam: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ... ) -> NDArray[int64]: ... @overload def zipf(self, a: _FloatLike_co, size: None = ...) -> int: ... # type: ignore[misc] @overload def zipf( self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ... ) -> NDArray[int64]: ... @overload def geometric(self, p: _FloatLike_co, size: None = ...) -> int: ... # type: ignore[misc] @overload def geometric( self, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ... ) -> NDArray[int64]: ... @overload def hypergeometric( self, ngood: int, nbad: int, nsample: int, size: None = ... ) -> int: ... # type: ignore[misc] @overload def hypergeometric( self, ngood: _ArrayLikeInt_co, nbad: _ArrayLikeInt_co, nsample: _ArrayLikeInt_co, size: None | _ShapeLike = ..., ) -> NDArray[int64]: ... @overload def logseries(self, p: _FloatLike_co, size: None = ...) -> int: ... # type: ignore[misc] @overload def logseries( self, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ... ) -> NDArray[int64]: ... def multivariate_normal( self, mean: _ArrayLikeFloat_co, cov: _ArrayLikeFloat_co, size: None | _ShapeLike = ..., check_valid: Literal["warn", "raise", "ignore"] = ..., tol: float = ..., *, method: Literal["svd", "eigh", "cholesky"] = ..., ) -> NDArray[float64]: ... def multinomial( self, n: _ArrayLikeInt_co, pvals: _ArrayLikeFloat_co, size: None | _ShapeLike = ... ) -> NDArray[int64]: ... def multivariate_hypergeometric( self, colors: _ArrayLikeInt_co, nsample: int, size: None | _ShapeLike = ..., method: Literal["marginals", "count"] = ..., ) -> NDArray[int64]: ... def dirichlet( self, alpha: _ArrayLikeFloat_co, size: None | _ShapeLike = ... ) -> NDArray[float64]: ... def permuted( self, x: ArrayLike, *, axis: None | int = ..., out: None | NDArray[Any] = ... ) -> NDArray[Any]: ... def shuffle(self, x: ArrayLike, axis: int = ...) -> None: ... def default_rng( seed: None | _ArrayLikeInt_co | SeedSequence | BitGenerator | Generator | RandomState = ... ) -> Generator: ...