import numpy as np from numpy.testing import assert_array_equal from sklearn.utils._unique import attach_unique, cached_unique from sklearn.utils.validation import check_array def test_attach_unique_attaches_unique_to_array(): arr = np.array([1, 2, 2, 3, 4, 4, 5]) arr_ = attach_unique(arr) assert_array_equal(arr_.dtype.metadata["unique"], np.array([1, 2, 3, 4, 5])) assert_array_equal(arr_, arr) def test_cached_unique_returns_cached_unique(): my_dtype = np.dtype(np.float64, metadata={"unique": np.array([1, 2])}) arr = np.array([1, 2, 2, 3, 4, 4, 5], dtype=my_dtype) assert_array_equal(cached_unique(arr), np.array([1, 2])) def test_attach_unique_not_ndarray(): """Test that when not np.ndarray, we don't touch the array.""" arr = [1, 2, 2, 3, 4, 4, 5] arr_ = attach_unique(arr) assert arr_ is arr def test_attach_unique_returns_view(): """Test that attach_unique returns a view of the array.""" arr = np.array([1, 2, 2, 3, 4, 4, 5]) arr_ = attach_unique(arr) assert arr_.base is arr def test_attach_unique_return_tuple(): """Test return_tuple argument of the function.""" arr = np.array([1, 2, 2, 3, 4, 4, 5]) arr_tuple = attach_unique(arr, return_tuple=True) assert isinstance(arr_tuple, tuple) assert len(arr_tuple) == 1 assert_array_equal(arr_tuple[0], arr) arr_single = attach_unique(arr, return_tuple=False) assert isinstance(arr_single, np.ndarray) assert_array_equal(arr_single, arr) def test_check_array_keeps_unique(): """Test that check_array keeps the unique metadata.""" arr = np.array([[1, 2, 2, 3, 4, 4, 5]]) arr_ = attach_unique(arr) arr_ = check_array(arr_) assert_array_equal(arr_.dtype.metadata["unique"], np.array([1, 2, 3, 4, 5])) assert_array_equal(arr_, arr)