"""Methods and algorithms to robustly estimate covariance. They estimate the covariance of features at given sets of points, as well as the precision matrix defined as the inverse of the covariance. Covariance estimation is closely related to the theory of Gaussian graphical models. """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause from ._elliptic_envelope import EllipticEnvelope from ._empirical_covariance import ( EmpiricalCovariance, empirical_covariance, log_likelihood, ) from ._graph_lasso import GraphicalLasso, GraphicalLassoCV, graphical_lasso from ._robust_covariance import MinCovDet, fast_mcd from ._shrunk_covariance import ( OAS, LedoitWolf, ShrunkCovariance, ledoit_wolf, ledoit_wolf_shrinkage, oas, shrunk_covariance, ) __all__ = [ "EllipticEnvelope", "EmpiricalCovariance", "GraphicalLasso", "GraphicalLassoCV", "LedoitWolf", "MinCovDet", "OAS", "ShrunkCovariance", "empirical_covariance", "fast_mcd", "graphical_lasso", "ledoit_wolf", "ledoit_wolf_shrinkage", "log_likelihood", "oas", "shrunk_covariance", ]