/* Translated into C++ by SciPy developers in 2024. * Original header with Copyright information appears below. */ /* ndtr.c * * Normal distribution function * * * * SYNOPSIS: * * double x, y, ndtr(); * * y = ndtr( x ); * * * * DESCRIPTION: * * Returns the area under the Gaussian probability density * function, integrated from minus infinity to x: * * x * - * 1 | | 2 * ndtr(x) = --------- | exp( - t /2 ) dt * sqrt(2pi) | | * - * -inf. * * = ( 1 + erf(z) ) / 2 * = erfc(z) / 2 * * where z = x/sqrt(2). Computation is via the functions * erf and erfc. * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -13,0 30000 3.4e-14 6.7e-15 * * * ERROR MESSAGES: * * message condition value returned * erfc underflow x > 37.519379347 0.0 * */ /* erf.c * * Error function * * * * SYNOPSIS: * * double x, y, erf(); * * y = erf( x ); * * * * DESCRIPTION: * * The integral is * * x * - * 2 | | 2 * erf(x) = -------- | exp( - t ) dt. * sqrt(pi) | | * - * 0 * * For 0 <= |x| < 1, erf(x) = x * P4(x**2)/Q5(x**2); otherwise * erf(x) = 1 - erfc(x). * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE 0,1 30000 3.7e-16 1.0e-16 * */ /* erfc.c * * Complementary error function * * * * SYNOPSIS: * * double x, y, erfc(); * * y = erfc( x ); * * * * DESCRIPTION: * * * 1 - erf(x) = * * inf. * - * 2 | | 2 * erfc(x) = -------- | exp( - t ) dt * sqrt(pi) | | * - * x * * * For small x, erfc(x) = 1 - erf(x); otherwise rational * approximations are computed. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE 0,26.6417 30000 5.7e-14 1.5e-14 */ /* * Cephes Math Library Release 2.2: June, 1992 * Copyright 1984, 1987, 1988, 1992 by Stephen L. Moshier * Direct inquiries to 30 Frost Street, Cambridge, MA 02140 */ #pragma once #include "../config.h" #include "const.h" #include "polevl.h" namespace xsf { namespace cephes { namespace detail { constexpr double ndtr_P[] = {2.46196981473530512524E-10, 5.64189564831068821977E-1, 7.46321056442269912687E0, 4.86371970985681366614E1, 1.96520832956077098242E2, 5.26445194995477358631E2, 9.34528527171957607540E2, 1.02755188689515710272E3, 5.57535335369399327526E2}; constexpr double ndtr_Q[] = { /* 1.00000000000000000000E0, */ 1.32281951154744992508E1, 8.67072140885989742329E1, 3.54937778887819891062E2, 9.75708501743205489753E2, 1.82390916687909736289E3, 2.24633760818710981792E3, 1.65666309194161350182E3, 5.57535340817727675546E2}; constexpr double ndtr_R[] = {5.64189583547755073984E-1, 1.27536670759978104416E0, 5.01905042251180477414E0, 6.16021097993053585195E0, 7.40974269950448939160E0, 2.97886665372100240670E0}; constexpr double ndtr_S[] = { /* 1.00000000000000000000E0, */ 2.26052863220117276590E0, 9.39603524938001434673E0, 1.20489539808096656605E1, 1.70814450747565897222E1, 9.60896809063285878198E0, 3.36907645100081516050E0}; constexpr double ndtr_T[] = {9.60497373987051638749E0, 9.00260197203842689217E1, 2.23200534594684319226E3, 7.00332514112805075473E3, 5.55923013010394962768E4}; constexpr double ndtr_U[] = { /* 1.00000000000000000000E0, */ 3.35617141647503099647E1, 5.21357949780152679795E2, 4.59432382970980127987E3, 2.26290000613890934246E4, 4.92673942608635921086E4}; constexpr double ndtri_UTHRESH = 37.519379347; } // namespace detail XSF_HOST_DEVICE inline double erf(double x); XSF_HOST_DEVICE inline double erfc(double a) { double p, q, x, y, z; if (std::isnan(a)) { set_error("erfc", SF_ERROR_DOMAIN, NULL); return std::numeric_limits::quiet_NaN(); } if (a < 0.0) { x = -a; } else { x = a; } if (x < 1.0) { return 1.0 - erf(a); } z = -a * a; if (z < -detail::MAXLOG) { goto under; } z = std::exp(z); if (x < 8.0) { p = polevl(x, detail::ndtr_P, 8); q = p1evl(x, detail::ndtr_Q, 8); } else { p = polevl(x, detail::ndtr_R, 5); q = p1evl(x, detail::ndtr_S, 6); } y = (z * p) / q; if (a < 0) { y = 2.0 - y; } if (y != 0.0) { return y; } under: set_error("erfc", SF_ERROR_UNDERFLOW, NULL); if (a < 0) { return 2.0; } else { return 0.0; } } XSF_HOST_DEVICE inline double erf(double x) { double y, z; if (std::isnan(x)) { set_error("erf", SF_ERROR_DOMAIN, NULL); return std::numeric_limits::quiet_NaN(); } if (x < 0.0) { return -erf(-x); } if (std::abs(x) > 1.0) { return (1.0 - erfc(x)); } z = x * x; y = x * polevl(z, detail::ndtr_T, 4) / p1evl(z, detail::ndtr_U, 5); return y; } XSF_HOST_DEVICE inline double ndtr(double a) { double x, y, z; if (std::isnan(a)) { set_error("ndtr", SF_ERROR_DOMAIN, NULL); return std::numeric_limits::quiet_NaN(); } x = a * M_SQRT1_2; z = std::abs(x); if (z < 1.0) { y = 0.5 + 0.5 * erf(x); } else { y = 0.5 * erfc(z); if (x > 0) { y = 1.0 - y; } } return y; } } // namespace cephes } // namespace xsf