"""unit tests for sparse utility functions""" import numpy as np from numpy.testing import assert_equal import pytest from pytest import raises as assert_raises from scipy.sparse import _sputils as sputils, csr_array, bsr_array, dia_array, coo_array from scipy.sparse._sputils import matrix class TestSparseUtils: def test_upcast(self): assert_equal(sputils.upcast('intc'), np.intc) assert_equal(sputils.upcast('int32', 'float32'), np.float64) assert_equal(sputils.upcast('bool', complex, float), np.complex128) assert_equal(sputils.upcast('i', 'd'), np.float64) def test_getdtype(self): A = np.array([1], dtype='int8') assert_equal(sputils.getdtype(None, default=float), float) assert_equal(sputils.getdtype(None, a=A), np.int8) with assert_raises( ValueError, match="scipy.sparse does not support dtype object. .*", ): sputils.getdtype("O") with assert_raises( ValueError, match="scipy.sparse does not support dtype float16. .*", ): sputils.getdtype(None, default=np.float16) def test_isscalarlike(self): assert_equal(sputils.isscalarlike(3.0), True) assert_equal(sputils.isscalarlike(-4), True) assert_equal(sputils.isscalarlike(2.5), True) assert_equal(sputils.isscalarlike(1 + 3j), True) assert_equal(sputils.isscalarlike(np.array(3)), True) assert_equal(sputils.isscalarlike("16"), True) assert_equal(sputils.isscalarlike(np.array([3])), False) assert_equal(sputils.isscalarlike([[3]]), False) assert_equal(sputils.isscalarlike((1,)), False) assert_equal(sputils.isscalarlike((1, 2)), False) def test_isintlike(self): assert_equal(sputils.isintlike(-4), True) assert_equal(sputils.isintlike(np.array(3)), True) assert_equal(sputils.isintlike(np.array([3])), False) with assert_raises( ValueError, match="Inexact indices into sparse matrices are not allowed" ): sputils.isintlike(3.0) assert_equal(sputils.isintlike(2.5), False) assert_equal(sputils.isintlike(1 + 3j), False) assert_equal(sputils.isintlike((1,)), False) assert_equal(sputils.isintlike((1, 2)), False) def test_isshape(self): assert_equal(sputils.isshape((1, 2)), True) assert_equal(sputils.isshape((5, 2)), True) assert_equal(sputils.isshape((1.5, 2)), False) assert_equal(sputils.isshape((2, 2, 2)), False) assert_equal(sputils.isshape(([2], 2)), False) assert_equal(sputils.isshape((-1, 2), nonneg=False),True) assert_equal(sputils.isshape((2, -1), nonneg=False),True) assert_equal(sputils.isshape((-1, 2), nonneg=True),False) assert_equal(sputils.isshape((2, -1), nonneg=True),False) assert_equal(sputils.isshape((1.5, 2), allow_nd=(1, 2)), False) assert_equal(sputils.isshape(([2], 2), allow_nd=(1, 2)), False) assert_equal(sputils.isshape((2, 2, -2), nonneg=True, allow_nd=(1, 2)), False) assert_equal(sputils.isshape((2,), allow_nd=(1, 2)), True) assert_equal(sputils.isshape((2, 2,), allow_nd=(1, 2)), True) assert_equal(sputils.isshape((2, 2, 2), allow_nd=(1, 2)), False) def test_issequence(self): assert_equal(sputils.issequence((1,)), True) assert_equal(sputils.issequence((1, 2, 3)), True) assert_equal(sputils.issequence([1]), True) assert_equal(sputils.issequence([1, 2, 3]), True) assert_equal(sputils.issequence(np.array([1, 2, 3])), True) assert_equal(sputils.issequence(np.array([[1], [2], [3]])), False) assert_equal(sputils.issequence(3), False) def test_ismatrix(self): assert_equal(sputils.ismatrix(((),)), True) assert_equal(sputils.ismatrix([[1], [2]]), True) assert_equal(sputils.ismatrix(np.arange(3)[None]), True) assert_equal(sputils.ismatrix([1, 2]), False) assert_equal(sputils.ismatrix(np.arange(3)), False) assert_equal(sputils.ismatrix([[[1]]]), False) assert_equal(sputils.ismatrix(3), False) def test_isdense(self): assert_equal(sputils.isdense(np.array([1])), True) assert_equal(sputils.isdense(matrix([1])), True) def test_validateaxis(self): assert_raises(TypeError, sputils.validateaxis, (0, 1)) assert_raises(TypeError, sputils.validateaxis, 1.5) assert_raises(ValueError, sputils.validateaxis, 3) # These function calls should not raise errors for axis in (-2, -1, 0, 1, None): sputils.validateaxis(axis) @pytest.mark.parametrize("container", [csr_array, bsr_array]) def test_safely_cast_index_compressed(self, container): # This is slow to test completely as nnz > imax is big # and indptr is big for some shapes # So we don't test large nnz, nor csc_array (same code as csr_array) imax = np.int64(np.iinfo(np.int32).max) # Shape 32bit A32 = container((1, imax)) # indices big type, small values B32 = A32.copy() B32.indices = B32.indices.astype(np.int64) B32.indptr = B32.indptr.astype(np.int64) # Shape 64bit # indices big type, small values A64 = csr_array((1, imax + 1)) # indices small type, small values B64 = A64.copy() B64.indices = B64.indices.astype(np.int32) B64.indptr = B64.indptr.astype(np.int32) # indices big type, big values C64 = A64.copy() C64.indices = np.array([imax + 1], dtype=np.int64) C64.indptr = np.array([0, 1], dtype=np.int64) C64.data = np.array([2.2]) assert (A32.indices.dtype, A32.indptr.dtype) == (np.int32, np.int32) assert (B32.indices.dtype, B32.indptr.dtype) == (np.int64, np.int64) assert (A64.indices.dtype, A64.indptr.dtype) == (np.int64, np.int64) assert (B64.indices.dtype, B64.indptr.dtype) == (np.int32, np.int32) assert (C64.indices.dtype, C64.indptr.dtype) == (np.int64, np.int64) for A in [A32, B32, A64, B64]: indices, indptr = sputils.safely_cast_index_arrays(A, np.int32) assert (indices.dtype, indptr.dtype) == (np.int32, np.int32) indices, indptr = sputils.safely_cast_index_arrays(A, np.int64) assert (indices.dtype, indptr.dtype) == (np.int64, np.int64) indices, indptr = sputils.safely_cast_index_arrays(A, A.indices.dtype) assert indices is A.indices assert indptr is A.indptr with assert_raises(ValueError): sputils.safely_cast_index_arrays(C64, np.int32) indices, indptr = sputils.safely_cast_index_arrays(C64, np.int64) assert indices is C64.indices assert indptr is C64.indptr def test_safely_cast_index_coo(self): # This is slow to test completely as nnz > imax is big # So we don't test large nnz imax = np.int64(np.iinfo(np.int32).max) # Shape 32bit A32 = coo_array((1, imax)) # coords big type, small values B32 = A32.copy() B32.coords = tuple(co.astype(np.int64) for co in B32.coords) # Shape 64bit # coords big type, small values A64 = coo_array((1, imax + 1)) # coords small type, small values B64 = A64.copy() B64.coords = tuple(co.astype(np.int32) for co in B64.coords) # coords big type, big values C64 = A64.copy() C64.coords = (np.array([imax + 1]), np.array([0])) C64.data = np.array([2.2]) assert A32.coords[0].dtype == np.int32 assert B32.coords[0].dtype == np.int64 assert A64.coords[0].dtype == np.int64 assert B64.coords[0].dtype == np.int32 assert C64.coords[0].dtype == np.int64 for A in [A32, B32, A64, B64]: coords = sputils.safely_cast_index_arrays(A, np.int32) assert coords[0].dtype == np.int32 coords = sputils.safely_cast_index_arrays(A, np.int64) assert coords[0].dtype == np.int64 coords = sputils.safely_cast_index_arrays(A, A.coords[0].dtype) assert coords[0] is A.coords[0] with assert_raises(ValueError): sputils.safely_cast_index_arrays(C64, np.int32) coords = sputils.safely_cast_index_arrays(C64, np.int64) assert coords[0] is C64.coords[0] def test_safely_cast_index_dia(self): # This is slow to test completely as nnz > imax is big # So we don't test large nnz imax = np.int64(np.iinfo(np.int32).max) # Shape 32bit A32 = dia_array((1, imax)) # offsets big type, small values B32 = A32.copy() B32.offsets = B32.offsets.astype(np.int64) # Shape 64bit # offsets big type, small values A64 = dia_array((1, imax + 2)) # offsets small type, small values B64 = A64.copy() B64.offsets = B64.offsets.astype(np.int32) # offsets big type, big values C64 = A64.copy() C64.offsets = np.array([imax + 1]) C64.data = np.array([2.2]) assert A32.offsets.dtype == np.int32 assert B32.offsets.dtype == np.int64 assert A64.offsets.dtype == np.int64 assert B64.offsets.dtype == np.int32 assert C64.offsets.dtype == np.int64 for A in [A32, B32, A64, B64]: offsets = sputils.safely_cast_index_arrays(A, np.int32) assert offsets.dtype == np.int32 offsets = sputils.safely_cast_index_arrays(A, np.int64) assert offsets.dtype == np.int64 offsets = sputils.safely_cast_index_arrays(A, A.offsets.dtype) assert offsets is A.offsets with assert_raises(ValueError): sputils.safely_cast_index_arrays(C64, np.int32) offsets = sputils.safely_cast_index_arrays(C64, np.int64) assert offsets is C64.offsets def test_get_index_dtype(self): imax = np.int64(np.iinfo(np.int32).max) too_big = imax + 1 # Check that uint32's with no values too large doesn't return # int64 a1 = np.ones(90, dtype='uint32') a2 = np.ones(90, dtype='uint32') assert_equal( np.dtype(sputils.get_index_dtype((a1, a2), check_contents=True)), np.dtype('int32') ) # Check that if we can not convert but all values are less than or # equal to max that we can just convert to int32 a1[-1] = imax assert_equal( np.dtype(sputils.get_index_dtype((a1, a2), check_contents=True)), np.dtype('int32') ) # Check that if it can not convert directly and the contents are # too large that we return int64 a1[-1] = too_big assert_equal( np.dtype(sputils.get_index_dtype((a1, a2), check_contents=True)), np.dtype('int64') ) # test that if can not convert and didn't specify to check_contents # we return int64 a1 = np.ones(89, dtype='uint32') a2 = np.ones(89, dtype='uint32') assert_equal( np.dtype(sputils.get_index_dtype((a1, a2))), np.dtype('int64') ) # Check that even if we have arrays that can be converted directly # that if we specify a maxval directly it takes precedence a1 = np.ones(12, dtype='uint32') a2 = np.ones(12, dtype='uint32') assert_equal( np.dtype(sputils.get_index_dtype( (a1, a2), maxval=too_big, check_contents=True )), np.dtype('int64') ) # Check that an array with a too max size and maxval set # still returns int64 a1[-1] = too_big assert_equal( np.dtype(sputils.get_index_dtype((a1, a2), maxval=too_big)), np.dtype('int64') ) # tests public broadcast_shapes largely from # numpy/numpy/lib/tests/test_stride_tricks.py # first 3 cause np.broadcast to raise index too large, but not sputils @pytest.mark.parametrize("input_shapes,target_shape", [ [((6, 5, 1, 4, 1, 1), (1, 2**32), (2**32, 1)), (6, 5, 1, 4, 2**32, 2**32)], [((6, 5, 1, 4, 1, 1), (1, 2**32)), (6, 5, 1, 4, 1, 2**32)], [((1, 2**32), (2**32, 1)), (2**32, 2**32)], [[2, 2, 2], (2,)], [[], ()], [[()], ()], [[(7,)], (7,)], [[(1, 2), (2,)], (1, 2)], [[(2,), (1, 2)], (1, 2)], [[(1, 1)], (1, 1)], [[(1, 1), (3, 4)], (3, 4)], [[(6, 7), (5, 6, 1), (7,), (5, 1, 7)], (5, 6, 7)], [[(5, 6, 1)], (5, 6, 1)], [[(1, 3), (3, 1)], (3, 3)], [[(1, 0), (0, 0)], (0, 0)], [[(0, 1), (0, 0)], (0, 0)], [[(1, 0), (0, 1)], (0, 0)], [[(1, 1), (0, 0)], (0, 0)], [[(1, 1), (1, 0)], (1, 0)], [[(1, 1), (0, 1)], (0, 1)], [[(), (0,)], (0,)], [[(0,), (0, 0)], (0, 0)], [[(0,), (0, 1)], (0, 0)], [[(1,), (0, 0)], (0, 0)], [[(), (0, 0)], (0, 0)], [[(1, 1), (0,)], (1, 0)], [[(1,), (0, 1)], (0, 1)], [[(1,), (1, 0)], (1, 0)], [[(), (1, 0)], (1, 0)], [[(), (0, 1)], (0, 1)], [[(1,), (3,)], (3,)], [[2, (3, 2)], (3, 2)], [[(1, 2)] * 32, (1, 2)], [[(1, 2)] * 100, (1, 2)], [[(2,)] * 32, (2,)], ]) def test_broadcast_shapes_successes(self, input_shapes, target_shape): assert_equal(sputils.broadcast_shapes(*input_shapes), target_shape) # tests public broadcast_shapes failures @pytest.mark.parametrize("input_shapes", [ [(3,), (4,)], [(2, 3), (2,)], [2, (2, 3)], [(3,), (3,), (4,)], [(2, 5), (3, 5)], [(2, 4), (2, 5)], [(1, 3, 4), (2, 3, 3)], [(1, 2), (3, 1), (3, 2), (10, 5)], [(2,)] * 32 + [(3,)] * 32, ]) def test_broadcast_shapes_failures(self, input_shapes): with assert_raises(ValueError, match="cannot be broadcast"): sputils.broadcast_shapes(*input_shapes) def test_check_shape_overflow(self): new_shape = sputils.check_shape([(10, -1)], (65535, 131070)) assert_equal(new_shape, (10, 858967245)) def test_matrix(self): a = [[1, 2, 3]] b = np.array(a) assert isinstance(sputils.matrix(a), np.matrix) assert isinstance(sputils.matrix(b), np.matrix) c = sputils.matrix(b) c[:, :] = 123 assert_equal(b, a) c = sputils.matrix(b, copy=False) c[:, :] = 123 assert_equal(b, [[123, 123, 123]]) def test_asmatrix(self): a = [[1, 2, 3]] b = np.array(a) assert isinstance(sputils.asmatrix(a), np.matrix) assert isinstance(sputils.asmatrix(b), np.matrix) c = sputils.asmatrix(b) c[:, :] = 123 assert_equal(b, [[123, 123, 123]])