""" =================================== Sparse arrays (:mod:`scipy.sparse`) =================================== .. currentmodule:: scipy.sparse .. toctree:: :hidden: sparse.csgraph sparse.linalg sparse.migration_to_sparray SciPy 2-D sparse array package for numeric data. .. note:: This package is switching to an array interface, compatible with NumPy arrays, from the older matrix interface. We recommend that you use the array objects (`bsr_array`, `coo_array`, etc.) for all new work. When using the array interface, please note that: - ``x * y`` no longer performs matrix multiplication, but element-wise multiplication (just like with NumPy arrays). To make code work with both arrays and matrices, use ``x @ y`` for matrix multiplication. - Operations such as ``sum``, that used to produce dense matrices, now produce arrays, whose multiplication behavior differs similarly. - Sparse arrays use array style *slicing* operations, returning scalars, 1D, or 2D sparse arrays. If you need 2D results, use an appropriate index. E.g. ``A[:, i, None]`` or ``A[:, [i]]``. The construction utilities (`eye`, `kron`, `random`, `diags`, etc.) have appropriate replacements (see :ref:`sparse-construction-functions`). For more information see :ref:`Migration from spmatrix to sparray `. Submodules ========== .. autosummary:: csgraph - Compressed sparse graph routines linalg - Sparse linear algebra routines Sparse array classes ==================== .. autosummary:: :toctree: generated/ bsr_array - Block Sparse Row array coo_array - A sparse array in COOrdinate format csc_array - Compressed Sparse Column array csr_array - Compressed Sparse Row array dia_array - Sparse array with DIAgonal storage dok_array - Dictionary Of Keys based sparse array lil_array - Row-based list of lists sparse array sparray - Sparse array base class .. _sparse-construction-functions: Building sparse arrays ---------------------- .. autosummary:: :toctree: generated/ diags_array - Return a sparse array from diagonals eye_array - Sparse MxN array whose k-th diagonal is all ones random_array - Random values in a given shape array block_array - Build a sparse array from sub-blocks .. _combining-arrays: Combining arrays ---------------- .. autosummary:: :toctree: generated/ kron - Kronecker product of two sparse arrays kronsum - Kronecker sum of sparse arrays block_diag - Build a block diagonal sparse array tril - Lower triangular portion of a sparse array triu - Upper triangular portion of a sparse array hstack - Stack sparse arrays horizontally (column wise) vstack - Stack sparse arrays vertically (row wise) Sparse tools ------------ .. autosummary:: :toctree: generated/ save_npz - Save a sparse array to a file using ``.npz`` format. load_npz - Load a sparse array from a file using ``.npz`` format. find - Return the indices and values of the nonzero elements get_index_dtype - determine a good dtype for index arrays. safely_cast_index_arrays - cast index array dtype or raise if shape too big Identifying sparse arrays ------------------------- .. autosummary:: :toctree: generated/ issparse - Check if the argument is a sparse object (array or matrix). Sparse matrix classes ===================== .. autosummary:: :toctree: generated/ bsr_matrix - Block Sparse Row matrix coo_matrix - A sparse matrix in COOrdinate format csc_matrix - Compressed Sparse Column matrix csr_matrix - Compressed Sparse Row matrix dia_matrix - Sparse matrix with DIAgonal storage dok_matrix - Dictionary Of Keys based sparse matrix lil_matrix - Row-based list of lists sparse matrix spmatrix - Sparse matrix base class Building sparse matrices ------------------------ .. autosummary:: :toctree: generated/ eye - Sparse MxN matrix whose k-th diagonal is all ones identity - Identity matrix in sparse matrix format diags - Return a sparse matrix from diagonals spdiags - Return a sparse matrix from diagonals bmat - Build a sparse matrix from sparse sub-blocks random - Random values in a given shape matrix rand - Random values in a given shape matrix (old interface) **Combining matrices use the same functions as for** :ref:`combining-arrays`. Identifying sparse matrices --------------------------- .. autosummary:: :toctree: generated/ issparse isspmatrix isspmatrix_csc isspmatrix_csr isspmatrix_bsr isspmatrix_lil isspmatrix_dok isspmatrix_coo isspmatrix_dia Warnings ======== .. autosummary:: :toctree: generated/ SparseEfficiencyWarning SparseWarning Usage information ================= There are seven available sparse array types: 1. csc_array: Compressed Sparse Column format 2. csr_array: Compressed Sparse Row format 3. bsr_array: Block Sparse Row format 4. lil_array: List of Lists format 5. dok_array: Dictionary of Keys format 6. coo_array: COOrdinate format (aka IJV, triplet format) 7. dia_array: DIAgonal format To construct an array efficiently, use any of `coo_array`, `dok_array` or `lil_array`. `dok_array` and `lil_array` support basic slicing and fancy indexing with a similar syntax to NumPy arrays. The COO format does not support indexing (yet) but can also be used to efficiently construct arrays using coord and value info. Despite their similarity to NumPy arrays, it is **strongly discouraged** to use NumPy functions directly on these arrays because NumPy typically treats them as generic Python objects rather than arrays, leading to unexpected (and incorrect) results. If you do want to apply a NumPy function to these arrays, first check if SciPy has its own implementation for the given sparse array class, or **convert the sparse array to a NumPy array** (e.g., using the `toarray` method of the class) before applying the method. All conversions among the CSR, CSC, and COO formats are efficient, linear-time operations. To perform manipulations such as multiplication or inversion, first convert the array to either CSC or CSR format. The `lil_array` format is row-based, so conversion to CSR is efficient, whereas conversion to CSC is less so. Matrix vector product --------------------- To do a vector product between a 2D sparse array and a vector use the matmul operator (i.e., ``@``) which performs a dot product (like the ``dot`` method): >>> import numpy as np >>> from scipy.sparse import csr_array >>> A = csr_array([[1, 2, 0], [0, 0, 3], [4, 0, 5]]) >>> v = np.array([1, 0, -1]) >>> A @ v array([ 1, -3, -1], dtype=int64) The CSR format is especially suitable for fast matrix vector products. Example 1 --------- Construct a 1000x1000 `lil_array` and add some values to it: >>> from scipy.sparse import lil_array >>> from scipy.sparse.linalg import spsolve >>> from numpy.linalg import solve, norm >>> from numpy.random import rand >>> A = lil_array((1000, 1000)) >>> A[0, :100] = rand(100) >>> A.setdiag(rand(1000)) Now convert it to CSR format and solve A x = b for x: >>> A = A.tocsr() >>> b = rand(1000) >>> x = spsolve(A, b) Convert it to a dense array and solve, and check that the result is the same: >>> x_ = solve(A.toarray(), b) Now we can compute norm of the error with: >>> err = norm(x-x_) >>> err < 1e-10 True It should be small :) Example 2 --------- Construct an array in COO format: >>> from scipy import sparse >>> from numpy import array >>> I = array([0,3,1,0]) >>> J = array([0,3,1,2]) >>> V = array([4,5,7,9]) >>> A = sparse.coo_array((V,(I,J)),shape=(4,4)) Notice that the indices do not need to be sorted. Duplicate (i,j) entries are summed when converting to CSR or CSC. >>> I = array([0,0,1,3,1,0,0]) >>> J = array([0,2,1,3,1,0,0]) >>> V = array([1,1,1,1,1,1,1]) >>> B = sparse.coo_array((V,(I,J)),shape=(4,4)).tocsr() This is useful for constructing finite-element stiffness and mass matrices. Further details --------------- CSR column indices are not necessarily sorted. Likewise for CSC row indices. Use the ``.sorted_indices()`` and ``.sort_indices()`` methods when sorted indices are required (e.g., when passing data to other libraries). """ # Original code by Travis Oliphant. # Modified and extended by Ed Schofield, Robert Cimrman, # Nathan Bell, and Jake Vanderplas. import warnings as _warnings from ._base import * from ._csr import * from ._csc import * from ._lil import * from ._dok import * from ._coo import * from ._dia import * from ._bsr import * from ._construct import * from ._extract import * from ._matrix import spmatrix from ._matrix_io import * from ._sputils import get_index_dtype, safely_cast_index_arrays # For backward compatibility with v0.19. from . import csgraph # Deprecated namespaces, to be removed in v2.0.0 from . import ( base, bsr, compressed, construct, coo, csc, csr, data, dia, dok, extract, lil, sparsetools, sputils ) __all__ = [s for s in dir() if not s.startswith('_')] # Filter PendingDeprecationWarning for np.matrix introduced with numpy 1.15 msg = 'the matrix subclass is not the recommended way' _warnings.filterwarnings('ignore', message=msg) from scipy._lib._testutils import PytestTester test = PytestTester(__name__) del PytestTester