import math import numpy as np from scipy._lib._array_api import ( xp_assert_equal, assert_array_almost_equal, assert_almost_equal, is_cupy, ) import pytest from scipy import ndimage from scipy.conftest import array_api_compatible skip_xp_backends = pytest.mark.skip_xp_backends pytestmark = [array_api_compatible, pytest.mark.usefixtures("skip_xp_backends"), skip_xp_backends(cpu_only=True, exceptions=['cupy', 'jax.numpy'],)] @skip_xp_backends('jax.numpy', reason="jax-ml/jax#23827") class TestNdimageFourier: @pytest.mark.parametrize('shape', [(32, 16), (31, 15), (1, 10)]) @pytest.mark.parametrize('dtype, dec', [("float32", 6), ("float64", 14)]) def test_fourier_gaussian_real01(self, shape, dtype, dec, xp): fft = getattr(xp, 'fft') a = np.zeros(shape, dtype=dtype) a[0, 0] = 1.0 a = xp.asarray(a) a = fft.rfft(a, n=shape[0], axis=0) a = fft.fft(a, n=shape[1], axis=1) a = ndimage.fourier_gaussian(a, [5.0, 2.5], shape[0], 0) a = fft.ifft(a, n=shape[1], axis=1) a = fft.irfft(a, n=shape[0], axis=0) assert_almost_equal(ndimage.sum(a), xp.asarray(1), decimal=dec, check_0d=False) @pytest.mark.parametrize('shape', [(32, 16), (31, 15)]) @pytest.mark.parametrize('dtype, dec', [("complex64", 6), ("complex128", 14)]) def test_fourier_gaussian_complex01(self, shape, dtype, dec, xp): fft = getattr(xp, 'fft') a = np.zeros(shape, dtype=dtype) a[0, 0] = 1.0 a = xp.asarray(a) a = fft.fft(a, n=shape[0], axis=0) a = fft.fft(a, n=shape[1], axis=1) a = ndimage.fourier_gaussian(a, [5.0, 2.5], -1, 0) a = fft.ifft(a, n=shape[1], axis=1) a = fft.ifft(a, n=shape[0], axis=0) assert_almost_equal(ndimage.sum(xp.real(a)), xp.asarray(1.0), decimal=dec, check_0d=False) @pytest.mark.parametrize('shape', [(32, 16), (31, 15), (1, 10)]) @pytest.mark.parametrize('dtype, dec', [("float32", 6), ("float64", 14)]) def test_fourier_uniform_real01(self, shape, dtype, dec, xp): fft = getattr(xp, 'fft') a = np.zeros(shape, dtype=dtype) a[0, 0] = 1.0 a = xp.asarray(a) a = fft.rfft(a, n=shape[0], axis=0) a = fft.fft(a, n=shape[1], axis=1) a = ndimage.fourier_uniform(a, [5.0, 2.5], shape[0], 0) a = fft.ifft(a, n=shape[1], axis=1) a = fft.irfft(a, n=shape[0], axis=0) assert_almost_equal(ndimage.sum(a), xp.asarray(1.0), decimal=dec, check_0d=False) @pytest.mark.parametrize('shape', [(32, 16), (31, 15)]) @pytest.mark.parametrize('dtype, dec', [("complex64", 6), ("complex128", 14)]) def test_fourier_uniform_complex01(self, shape, dtype, dec, xp): fft = getattr(xp, 'fft') a = np.zeros(shape, dtype=dtype) a[0, 0] = 1.0 a = xp.asarray(a) a = fft.fft(a, n=shape[0], axis=0) a = fft.fft(a, n=shape[1], axis=1) a = ndimage.fourier_uniform(a, [5.0, 2.5], -1, 0) a = fft.ifft(a, n=shape[1], axis=1) a = fft.ifft(a, n=shape[0], axis=0) assert_almost_equal(ndimage.sum(xp.real(a)), xp.asarray(1.0), decimal=dec, check_0d=False) @pytest.mark.parametrize('shape', [(32, 16), (31, 15)]) @pytest.mark.parametrize('dtype, dec', [("float32", 4), ("float64", 11)]) def test_fourier_shift_real01(self, shape, dtype, dec, xp): fft = getattr(xp, 'fft') expected = np.arange(shape[0] * shape[1], dtype=dtype).reshape(shape) expected = xp.asarray(expected) a = fft.rfft(expected, n=shape[0], axis=0) a = fft.fft(a, n=shape[1], axis=1) a = ndimage.fourier_shift(a, [1, 1], shape[0], 0) a = fft.ifft(a, n=shape[1], axis=1) a = fft.irfft(a, n=shape[0], axis=0) assert_array_almost_equal(a[1:, 1:], expected[:-1, :-1], decimal=dec) @pytest.mark.parametrize('shape', [(32, 16), (31, 15)]) @pytest.mark.parametrize('dtype, dec', [("complex64", 4), ("complex128", 11)]) def test_fourier_shift_complex01(self, shape, dtype, dec, xp): fft = getattr(xp, 'fft') expected = np.arange(shape[0] * shape[1], dtype=dtype).reshape(shape) expected = xp.asarray(expected) a = fft.fft(expected, n=shape[0], axis=0) a = fft.fft(a, n=shape[1], axis=1) a = ndimage.fourier_shift(a, [1, 1], -1, 0) a = fft.ifft(a, n=shape[1], axis=1) a = fft.ifft(a, n=shape[0], axis=0) assert_array_almost_equal(xp.real(a)[1:, 1:], expected[:-1, :-1], decimal=dec) assert_array_almost_equal(xp.imag(a), xp.zeros(shape), decimal=dec) @pytest.mark.parametrize('shape', [(32, 16), (31, 15), (1, 10)]) @pytest.mark.parametrize('dtype, dec', [("float32", 5), ("float64", 14)]) def test_fourier_ellipsoid_real01(self, shape, dtype, dec, xp): fft = getattr(xp, 'fft') a = np.zeros(shape, dtype=dtype) a[0, 0] = 1.0 a = xp.asarray(a) a = fft.rfft(a, n=shape[0], axis=0) a = fft.fft(a, n=shape[1], axis=1) a = ndimage.fourier_ellipsoid(a, [5.0, 2.5], shape[0], 0) a = fft.ifft(a, n=shape[1], axis=1) a = fft.irfft(a, n=shape[0], axis=0) assert_almost_equal(ndimage.sum(a), xp.asarray(1.0), decimal=dec, check_0d=False) @pytest.mark.parametrize('shape', [(32, 16), (31, 15)]) @pytest.mark.parametrize('dtype, dec', [("complex64", 5), ("complex128", 14)]) def test_fourier_ellipsoid_complex01(self, shape, dtype, dec, xp): fft = getattr(xp, 'fft') a = np.zeros(shape, dtype=dtype) a[0, 0] = 1.0 a = xp.asarray(a) a = fft.fft(a, n=shape[0], axis=0) a = fft.fft(a, n=shape[1], axis=1) a = ndimage.fourier_ellipsoid(a, [5.0, 2.5], -1, 0) a = fft.ifft(a, n=shape[1], axis=1) a = fft.ifft(a, n=shape[0], axis=0) assert_almost_equal(ndimage.sum(xp.real(a)), xp.asarray(1.0), decimal=dec, check_0d=False) def test_fourier_ellipsoid_unimplemented_ndim(self, xp): # arrays with ndim > 3 raise NotImplementedError x = xp.ones((4, 6, 8, 10), dtype=xp.complex128) with pytest.raises(NotImplementedError): ndimage.fourier_ellipsoid(x, 3) def test_fourier_ellipsoid_1d_complex(self, xp): # expected result of 1d ellipsoid is the same as for fourier_uniform for shape in [(32, ), (31, )]: for type_, dec in zip([xp.complex64, xp.complex128], [5, 14]): x = xp.ones(shape, dtype=type_) a = ndimage.fourier_ellipsoid(x, 5, -1, 0) b = ndimage.fourier_uniform(x, 5, -1, 0) assert_array_almost_equal(a, b, decimal=dec) @pytest.mark.parametrize('shape', [(0, ), (0, 10), (10, 0)]) @pytest.mark.parametrize('dtype', ["float32", "float64", "complex64", "complex128"]) @pytest.mark.parametrize('test_func', [ndimage.fourier_ellipsoid, ndimage.fourier_gaussian, ndimage.fourier_uniform]) def test_fourier_zero_length_dims(self, shape, dtype, test_func, xp): if is_cupy(xp): if (test_func.__name__ == "fourier_ellipsoid" and math.prod(shape) == 0): pytest.xfail( "CuPy's fourier_ellipsoid does not accept size==0 arrays" ) dtype = getattr(xp, dtype) a = xp.ones(shape, dtype=dtype) b = test_func(a, 3) xp_assert_equal(a, b)