|
import numpy as np |
|
import pytest |
|
import scipy.sparse as sp |
|
from numpy.random import RandomState |
|
from numpy.testing import assert_array_almost_equal, assert_array_equal |
|
from scipy import linalg |
|
|
|
from sklearn.datasets import make_classification |
|
from sklearn.utils._testing import assert_allclose |
|
from sklearn.utils.fixes import CSC_CONTAINERS, CSR_CONTAINERS, LIL_CONTAINERS |
|
from sklearn.utils.sparsefuncs import ( |
|
_implicit_column_offset, |
|
count_nonzero, |
|
csc_median_axis_0, |
|
incr_mean_variance_axis, |
|
inplace_column_scale, |
|
inplace_row_scale, |
|
inplace_swap_column, |
|
inplace_swap_row, |
|
mean_variance_axis, |
|
min_max_axis, |
|
) |
|
from sklearn.utils.sparsefuncs_fast import ( |
|
assign_rows_csr, |
|
csr_row_norms, |
|
inplace_csr_row_normalize_l1, |
|
inplace_csr_row_normalize_l2, |
|
) |
|
|
|
|
|
@pytest.mark.parametrize("csc_container", CSC_CONTAINERS) |
|
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS) |
|
@pytest.mark.parametrize("lil_container", LIL_CONTAINERS) |
|
def test_mean_variance_axis0(csc_container, csr_container, lil_container): |
|
X, _ = make_classification(5, 4, random_state=0) |
|
|
|
X[0, 0] = 0 |
|
X[2, 1] = 0 |
|
X[4, 3] = 0 |
|
X_lil = lil_container(X) |
|
X_lil[1, 0] = 0 |
|
X[1, 0] = 0 |
|
|
|
with pytest.raises(TypeError): |
|
mean_variance_axis(X_lil, axis=0) |
|
|
|
X_csr = csr_container(X_lil) |
|
X_csc = csc_container(X_lil) |
|
|
|
expected_dtypes = [ |
|
(np.float32, np.float32), |
|
(np.float64, np.float64), |
|
(np.int32, np.float64), |
|
(np.int64, np.float64), |
|
] |
|
|
|
for input_dtype, output_dtype in expected_dtypes: |
|
X_test = X.astype(input_dtype) |
|
for X_sparse in (X_csr, X_csc): |
|
X_sparse = X_sparse.astype(input_dtype) |
|
X_means, X_vars = mean_variance_axis(X_sparse, axis=0) |
|
assert X_means.dtype == output_dtype |
|
assert X_vars.dtype == output_dtype |
|
assert_array_almost_equal(X_means, np.mean(X_test, axis=0)) |
|
assert_array_almost_equal(X_vars, np.var(X_test, axis=0)) |
|
|
|
|
|
@pytest.mark.parametrize("dtype", [np.float32, np.float64]) |
|
@pytest.mark.parametrize("sparse_constructor", CSC_CONTAINERS + CSR_CONTAINERS) |
|
def test_mean_variance_axis0_precision(dtype, sparse_constructor): |
|
|
|
|
|
rng = np.random.RandomState(0) |
|
X = np.full(fill_value=100.0, shape=(1000, 1), dtype=dtype) |
|
|
|
missing_indices = rng.choice(np.arange(X.shape[0]), 10, replace=False) |
|
X[missing_indices, 0] = np.nan |
|
X = sparse_constructor(X) |
|
|
|
|
|
sample_weight = rng.rand(X.shape[0]).astype(dtype) |
|
|
|
_, var = mean_variance_axis(X, weights=sample_weight, axis=0) |
|
|
|
assert var < np.finfo(dtype).eps |
|
|
|
|
|
@pytest.mark.parametrize("csc_container", CSC_CONTAINERS) |
|
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS) |
|
@pytest.mark.parametrize("lil_container", LIL_CONTAINERS) |
|
def test_mean_variance_axis1(csc_container, csr_container, lil_container): |
|
X, _ = make_classification(5, 4, random_state=0) |
|
|
|
X[0, 0] = 0 |
|
X[2, 1] = 0 |
|
X[4, 3] = 0 |
|
X_lil = lil_container(X) |
|
X_lil[1, 0] = 0 |
|
X[1, 0] = 0 |
|
|
|
with pytest.raises(TypeError): |
|
mean_variance_axis(X_lil, axis=1) |
|
|
|
X_csr = csr_container(X_lil) |
|
X_csc = csc_container(X_lil) |
|
|
|
expected_dtypes = [ |
|
(np.float32, np.float32), |
|
(np.float64, np.float64), |
|
(np.int32, np.float64), |
|
(np.int64, np.float64), |
|
] |
|
|
|
for input_dtype, output_dtype in expected_dtypes: |
|
X_test = X.astype(input_dtype) |
|
for X_sparse in (X_csr, X_csc): |
|
X_sparse = X_sparse.astype(input_dtype) |
|
X_means, X_vars = mean_variance_axis(X_sparse, axis=0) |
|
assert X_means.dtype == output_dtype |
|
assert X_vars.dtype == output_dtype |
|
assert_array_almost_equal(X_means, np.mean(X_test, axis=0)) |
|
assert_array_almost_equal(X_vars, np.var(X_test, axis=0)) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
["Xw", "X", "weights"], |
|
[ |
|
([[0, 0, 1], [0, 2, 3]], [[0, 0, 1], [0, 2, 3]], [1, 1, 1]), |
|
([[0, 0, 1], [0, 1, 1]], [[0, 0, 0, 1], [0, 1, 1, 1]], [1, 2, 1]), |
|
([[0, 0, 1], [0, 1, 1]], [[0, 0, 1], [0, 1, 1]], None), |
|
( |
|
[[0, np.nan, 2], [0, np.nan, np.nan]], |
|
[[0, np.nan, 2], [0, np.nan, np.nan]], |
|
[1.0, 1.0, 1.0], |
|
), |
|
( |
|
[[0, 0], [1, np.nan], [2, 0], [0, 3], [np.nan, np.nan], [np.nan, 2]], |
|
[ |
|
[0, 0, 0], |
|
[1, 1, np.nan], |
|
[2, 2, 0], |
|
[0, 0, 3], |
|
[np.nan, np.nan, np.nan], |
|
[np.nan, np.nan, 2], |
|
], |
|
[2.0, 1.0], |
|
), |
|
( |
|
[[1, 0, 1], [0, 3, 1]], |
|
[[1, 0, 0, 0, 1], [0, 3, 3, 3, 1]], |
|
np.array([1, 3, 1]), |
|
), |
|
], |
|
) |
|
@pytest.mark.parametrize("sparse_constructor", CSC_CONTAINERS + CSR_CONTAINERS) |
|
@pytest.mark.parametrize("dtype", [np.float32, np.float64]) |
|
def test_incr_mean_variance_axis_weighted_axis1( |
|
Xw, X, weights, sparse_constructor, dtype |
|
): |
|
axis = 1 |
|
Xw_sparse = sparse_constructor(Xw).astype(dtype) |
|
X_sparse = sparse_constructor(X).astype(dtype) |
|
|
|
last_mean = np.zeros(np.shape(Xw)[0], dtype=dtype) |
|
last_var = np.zeros_like(last_mean, dtype=dtype) |
|
last_n = np.zeros_like(last_mean, dtype=np.int64) |
|
means0, vars0, n_incr0 = incr_mean_variance_axis( |
|
X=X_sparse, |
|
axis=axis, |
|
last_mean=last_mean, |
|
last_var=last_var, |
|
last_n=last_n, |
|
weights=None, |
|
) |
|
|
|
means_w0, vars_w0, n_incr_w0 = incr_mean_variance_axis( |
|
X=Xw_sparse, |
|
axis=axis, |
|
last_mean=last_mean, |
|
last_var=last_var, |
|
last_n=last_n, |
|
weights=weights, |
|
) |
|
|
|
assert means_w0.dtype == dtype |
|
assert vars_w0.dtype == dtype |
|
assert n_incr_w0.dtype == dtype |
|
|
|
means_simple, vars_simple = mean_variance_axis(X=X_sparse, axis=axis) |
|
|
|
assert_array_almost_equal(means0, means_w0) |
|
assert_array_almost_equal(means0, means_simple) |
|
assert_array_almost_equal(vars0, vars_w0) |
|
assert_array_almost_equal(vars0, vars_simple) |
|
assert_array_almost_equal(n_incr0, n_incr_w0) |
|
|
|
|
|
means1, vars1, n_incr1 = incr_mean_variance_axis( |
|
X=X_sparse, |
|
axis=axis, |
|
last_mean=means0, |
|
last_var=vars0, |
|
last_n=n_incr0, |
|
weights=None, |
|
) |
|
|
|
means_w1, vars_w1, n_incr_w1 = incr_mean_variance_axis( |
|
X=Xw_sparse, |
|
axis=axis, |
|
last_mean=means_w0, |
|
last_var=vars_w0, |
|
last_n=n_incr_w0, |
|
weights=weights, |
|
) |
|
|
|
assert_array_almost_equal(means1, means_w1) |
|
assert_array_almost_equal(vars1, vars_w1) |
|
assert_array_almost_equal(n_incr1, n_incr_w1) |
|
|
|
assert means_w1.dtype == dtype |
|
assert vars_w1.dtype == dtype |
|
assert n_incr_w1.dtype == dtype |
|
|
|
|
|
@pytest.mark.parametrize( |
|
["Xw", "X", "weights"], |
|
[ |
|
([[0, 0, 1], [0, 2, 3]], [[0, 0, 1], [0, 2, 3]], [1, 1]), |
|
([[0, 0, 1], [0, 1, 1]], [[0, 0, 1], [0, 1, 1], [0, 1, 1]], [1, 2]), |
|
([[0, 0, 1], [0, 1, 1]], [[0, 0, 1], [0, 1, 1]], None), |
|
( |
|
[[0, np.nan, 2], [0, np.nan, np.nan]], |
|
[[0, np.nan, 2], [0, np.nan, np.nan]], |
|
[1.0, 1.0], |
|
), |
|
( |
|
[[0, 0, 1, np.nan, 2, 0], [0, 3, np.nan, np.nan, np.nan, 2]], |
|
[ |
|
[0, 0, 1, np.nan, 2, 0], |
|
[0, 0, 1, np.nan, 2, 0], |
|
[0, 3, np.nan, np.nan, np.nan, 2], |
|
], |
|
[2.0, 1.0], |
|
), |
|
( |
|
[[1, 0, 1], [0, 0, 1]], |
|
[[1, 0, 1], [0, 0, 1], [0, 0, 1], [0, 0, 1]], |
|
np.array([1, 3]), |
|
), |
|
], |
|
) |
|
@pytest.mark.parametrize("sparse_constructor", CSC_CONTAINERS + CSR_CONTAINERS) |
|
@pytest.mark.parametrize("dtype", [np.float32, np.float64]) |
|
def test_incr_mean_variance_axis_weighted_axis0( |
|
Xw, X, weights, sparse_constructor, dtype |
|
): |
|
axis = 0 |
|
Xw_sparse = sparse_constructor(Xw).astype(dtype) |
|
X_sparse = sparse_constructor(X).astype(dtype) |
|
|
|
last_mean = np.zeros(np.size(Xw, 1), dtype=dtype) |
|
last_var = np.zeros_like(last_mean) |
|
last_n = np.zeros_like(last_mean, dtype=np.int64) |
|
means0, vars0, n_incr0 = incr_mean_variance_axis( |
|
X=X_sparse, |
|
axis=axis, |
|
last_mean=last_mean, |
|
last_var=last_var, |
|
last_n=last_n, |
|
weights=None, |
|
) |
|
|
|
means_w0, vars_w0, n_incr_w0 = incr_mean_variance_axis( |
|
X=Xw_sparse, |
|
axis=axis, |
|
last_mean=last_mean, |
|
last_var=last_var, |
|
last_n=last_n, |
|
weights=weights, |
|
) |
|
|
|
assert means_w0.dtype == dtype |
|
assert vars_w0.dtype == dtype |
|
assert n_incr_w0.dtype == dtype |
|
|
|
means_simple, vars_simple = mean_variance_axis(X=X_sparse, axis=axis) |
|
|
|
assert_array_almost_equal(means0, means_w0) |
|
assert_array_almost_equal(means0, means_simple) |
|
assert_array_almost_equal(vars0, vars_w0) |
|
assert_array_almost_equal(vars0, vars_simple) |
|
assert_array_almost_equal(n_incr0, n_incr_w0) |
|
|
|
|
|
means1, vars1, n_incr1 = incr_mean_variance_axis( |
|
X=X_sparse, |
|
axis=axis, |
|
last_mean=means0, |
|
last_var=vars0, |
|
last_n=n_incr0, |
|
weights=None, |
|
) |
|
|
|
means_w1, vars_w1, n_incr_w1 = incr_mean_variance_axis( |
|
X=Xw_sparse, |
|
axis=axis, |
|
last_mean=means_w0, |
|
last_var=vars_w0, |
|
last_n=n_incr_w0, |
|
weights=weights, |
|
) |
|
|
|
assert_array_almost_equal(means1, means_w1) |
|
assert_array_almost_equal(vars1, vars_w1) |
|
assert_array_almost_equal(n_incr1, n_incr_w1) |
|
|
|
assert means_w1.dtype == dtype |
|
assert vars_w1.dtype == dtype |
|
assert n_incr_w1.dtype == dtype |
|
|
|
|
|
@pytest.mark.parametrize("csc_container", CSC_CONTAINERS) |
|
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS) |
|
@pytest.mark.parametrize("lil_container", LIL_CONTAINERS) |
|
def test_incr_mean_variance_axis(csc_container, csr_container, lil_container): |
|
for axis in [0, 1]: |
|
rng = np.random.RandomState(0) |
|
n_features = 50 |
|
n_samples = 10 |
|
if axis == 0: |
|
data_chunks = [rng.randint(0, 2, size=n_features) for i in range(n_samples)] |
|
else: |
|
data_chunks = [rng.randint(0, 2, size=n_samples) for i in range(n_features)] |
|
|
|
|
|
last_mean = np.zeros(n_features) if axis == 0 else np.zeros(n_samples) |
|
last_var = np.zeros_like(last_mean) |
|
last_n = np.zeros_like(last_mean, dtype=np.int64) |
|
|
|
|
|
X = np.array(data_chunks[0]) |
|
X = np.atleast_2d(X) |
|
X = X.T if axis == 1 else X |
|
X_lil = lil_container(X) |
|
X_csr = csr_container(X_lil) |
|
|
|
with pytest.raises(TypeError): |
|
incr_mean_variance_axis( |
|
X=axis, axis=last_mean, last_mean=last_var, last_var=last_n |
|
) |
|
with pytest.raises(TypeError): |
|
incr_mean_variance_axis( |
|
X_lil, axis=axis, last_mean=last_mean, last_var=last_var, last_n=last_n |
|
) |
|
|
|
|
|
X_means, X_vars = mean_variance_axis(X_csr, axis) |
|
X_means_incr, X_vars_incr, n_incr = incr_mean_variance_axis( |
|
X_csr, axis=axis, last_mean=last_mean, last_var=last_var, last_n=last_n |
|
) |
|
assert_array_almost_equal(X_means, X_means_incr) |
|
assert_array_almost_equal(X_vars, X_vars_incr) |
|
|
|
assert_array_equal(X.shape[axis], n_incr) |
|
|
|
X_csc = csc_container(X_lil) |
|
X_means, X_vars = mean_variance_axis(X_csc, axis) |
|
assert_array_almost_equal(X_means, X_means_incr) |
|
assert_array_almost_equal(X_vars, X_vars_incr) |
|
assert_array_equal(X.shape[axis], n_incr) |
|
|
|
|
|
X = np.vstack(data_chunks) |
|
X = X.T if axis == 1 else X |
|
X_lil = lil_container(X) |
|
X_csr = csr_container(X_lil) |
|
X_csc = csc_container(X_lil) |
|
|
|
expected_dtypes = [ |
|
(np.float32, np.float32), |
|
(np.float64, np.float64), |
|
(np.int32, np.float64), |
|
(np.int64, np.float64), |
|
] |
|
|
|
for input_dtype, output_dtype in expected_dtypes: |
|
for X_sparse in (X_csr, X_csc): |
|
X_sparse = X_sparse.astype(input_dtype) |
|
last_mean = last_mean.astype(output_dtype) |
|
last_var = last_var.astype(output_dtype) |
|
X_means, X_vars = mean_variance_axis(X_sparse, axis) |
|
X_means_incr, X_vars_incr, n_incr = incr_mean_variance_axis( |
|
X_sparse, |
|
axis=axis, |
|
last_mean=last_mean, |
|
last_var=last_var, |
|
last_n=last_n, |
|
) |
|
assert X_means_incr.dtype == output_dtype |
|
assert X_vars_incr.dtype == output_dtype |
|
assert_array_almost_equal(X_means, X_means_incr) |
|
assert_array_almost_equal(X_vars, X_vars_incr) |
|
assert_array_equal(X.shape[axis], n_incr) |
|
|
|
|
|
@pytest.mark.parametrize("sparse_constructor", CSC_CONTAINERS + CSR_CONTAINERS) |
|
def test_incr_mean_variance_axis_dim_mismatch(sparse_constructor): |
|
"""Check that we raise proper error when axis=1 and the dimension mismatch. |
|
Non-regression test for: |
|
https://github.com/scikit-learn/scikit-learn/pull/18655 |
|
""" |
|
n_samples, n_features = 60, 4 |
|
rng = np.random.RandomState(42) |
|
X = sparse_constructor(rng.rand(n_samples, n_features)) |
|
|
|
last_mean = np.zeros(n_features) |
|
last_var = np.zeros_like(last_mean) |
|
last_n = np.zeros(last_mean.shape, dtype=np.int64) |
|
|
|
kwargs = dict(last_mean=last_mean, last_var=last_var, last_n=last_n) |
|
mean0, var0, _ = incr_mean_variance_axis(X, axis=0, **kwargs) |
|
assert_allclose(np.mean(X.toarray(), axis=0), mean0) |
|
assert_allclose(np.var(X.toarray(), axis=0), var0) |
|
|
|
|
|
with pytest.raises(ValueError): |
|
incr_mean_variance_axis(X, axis=1, **kwargs) |
|
|
|
|
|
kwargs = dict(last_mean=last_mean[:-1], last_var=last_var, last_n=last_n) |
|
with pytest.raises(ValueError): |
|
incr_mean_variance_axis(X, axis=0, **kwargs) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"X1, X2", |
|
[ |
|
( |
|
sp.random(5, 2, density=0.8, format="csr", random_state=0), |
|
sp.random(13, 2, density=0.8, format="csr", random_state=0), |
|
), |
|
( |
|
sp.random(5, 2, density=0.8, format="csr", random_state=0), |
|
sp.hstack( |
|
[ |
|
np.full((13, 1), fill_value=np.nan), |
|
sp.random(13, 1, density=0.8, random_state=42), |
|
], |
|
format="csr", |
|
), |
|
), |
|
], |
|
) |
|
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS) |
|
def test_incr_mean_variance_axis_equivalence_mean_variance(X1, X2, csr_container): |
|
|
|
|
|
|
|
|
|
X1 = csr_container(X1) |
|
X2 = csr_container(X2) |
|
axis = 0 |
|
last_mean, last_var = np.zeros(X1.shape[1]), np.zeros(X1.shape[1]) |
|
last_n = np.zeros(X1.shape[1], dtype=np.int64) |
|
updated_mean, updated_var, updated_n = incr_mean_variance_axis( |
|
X1, axis=axis, last_mean=last_mean, last_var=last_var, last_n=last_n |
|
) |
|
updated_mean, updated_var, updated_n = incr_mean_variance_axis( |
|
X2, axis=axis, last_mean=updated_mean, last_var=updated_var, last_n=updated_n |
|
) |
|
X = sp.vstack([X1, X2]) |
|
assert_allclose(updated_mean, np.nanmean(X.toarray(), axis=axis)) |
|
assert_allclose(updated_var, np.nanvar(X.toarray(), axis=axis)) |
|
assert_allclose(updated_n, np.count_nonzero(~np.isnan(X.toarray()), axis=0)) |
|
|
|
|
|
def test_incr_mean_variance_no_new_n(): |
|
|
|
axis = 0 |
|
X1 = sp.random(5, 1, density=0.8, random_state=0).tocsr() |
|
X2 = sp.random(0, 1, density=0.8, random_state=0).tocsr() |
|
last_mean, last_var = np.zeros(X1.shape[1]), np.zeros(X1.shape[1]) |
|
last_n = np.zeros(X1.shape[1], dtype=np.int64) |
|
last_mean, last_var, last_n = incr_mean_variance_axis( |
|
X1, axis=axis, last_mean=last_mean, last_var=last_var, last_n=last_n |
|
) |
|
|
|
updated_mean, updated_var, updated_n = incr_mean_variance_axis( |
|
X2, axis=axis, last_mean=last_mean, last_var=last_var, last_n=last_n |
|
) |
|
assert_allclose(updated_mean, last_mean) |
|
assert_allclose(updated_var, last_var) |
|
assert_allclose(updated_n, last_n) |
|
|
|
|
|
def test_incr_mean_variance_n_float(): |
|
|
|
axis = 0 |
|
X = sp.random(5, 2, density=0.8, random_state=0).tocsr() |
|
last_mean, last_var = np.zeros(X.shape[1]), np.zeros(X.shape[1]) |
|
last_n = 0 |
|
_, _, new_n = incr_mean_variance_axis( |
|
X, axis=axis, last_mean=last_mean, last_var=last_var, last_n=last_n |
|
) |
|
assert_allclose(new_n, np.full(X.shape[1], X.shape[0])) |
|
|
|
|
|
@pytest.mark.parametrize("axis", [0, 1]) |
|
@pytest.mark.parametrize("sparse_constructor", CSC_CONTAINERS + CSR_CONTAINERS) |
|
def test_incr_mean_variance_axis_ignore_nan(axis, sparse_constructor): |
|
old_means = np.array([535.0, 535.0, 535.0, 535.0]) |
|
old_variances = np.array([4225.0, 4225.0, 4225.0, 4225.0]) |
|
old_sample_count = np.array([2, 2, 2, 2], dtype=np.int64) |
|
|
|
X = sparse_constructor( |
|
np.array([[170, 170, 170, 170], [430, 430, 430, 430], [300, 300, 300, 300]]) |
|
) |
|
|
|
X_nan = sparse_constructor( |
|
np.array( |
|
[ |
|
[170, np.nan, 170, 170], |
|
[np.nan, 170, 430, 430], |
|
[430, 430, np.nan, 300], |
|
[300, 300, 300, np.nan], |
|
] |
|
) |
|
) |
|
|
|
|
|
|
|
if axis: |
|
X = X.T |
|
X_nan = X_nan.T |
|
|
|
|
|
X_means, X_vars, X_sample_count = incr_mean_variance_axis( |
|
X, |
|
axis=axis, |
|
last_mean=old_means.copy(), |
|
last_var=old_variances.copy(), |
|
last_n=old_sample_count.copy(), |
|
) |
|
X_nan_means, X_nan_vars, X_nan_sample_count = incr_mean_variance_axis( |
|
X_nan, |
|
axis=axis, |
|
last_mean=old_means.copy(), |
|
last_var=old_variances.copy(), |
|
last_n=old_sample_count.copy(), |
|
) |
|
|
|
assert_allclose(X_nan_means, X_means) |
|
assert_allclose(X_nan_vars, X_vars) |
|
assert_allclose(X_nan_sample_count, X_sample_count) |
|
|
|
|
|
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS) |
|
def test_mean_variance_illegal_axis(csr_container): |
|
X, _ = make_classification(5, 4, random_state=0) |
|
|
|
X[0, 0] = 0 |
|
X[2, 1] = 0 |
|
X[4, 3] = 0 |
|
X_csr = csr_container(X) |
|
with pytest.raises(ValueError): |
|
mean_variance_axis(X_csr, axis=-3) |
|
with pytest.raises(ValueError): |
|
mean_variance_axis(X_csr, axis=2) |
|
with pytest.raises(ValueError): |
|
mean_variance_axis(X_csr, axis=-1) |
|
|
|
with pytest.raises(ValueError): |
|
incr_mean_variance_axis( |
|
X_csr, axis=-3, last_mean=None, last_var=None, last_n=None |
|
) |
|
|
|
with pytest.raises(ValueError): |
|
incr_mean_variance_axis( |
|
X_csr, axis=2, last_mean=None, last_var=None, last_n=None |
|
) |
|
|
|
with pytest.raises(ValueError): |
|
incr_mean_variance_axis( |
|
X_csr, axis=-1, last_mean=None, last_var=None, last_n=None |
|
) |
|
|
|
|
|
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS) |
|
def test_densify_rows(csr_container): |
|
for dtype in (np.float32, np.float64): |
|
X = csr_container( |
|
[[0, 3, 0], [2, 4, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=dtype |
|
) |
|
X_rows = np.array([0, 2, 3], dtype=np.intp) |
|
out = np.ones((6, X.shape[1]), dtype=dtype) |
|
out_rows = np.array([1, 3, 4], dtype=np.intp) |
|
|
|
expect = np.ones_like(out) |
|
expect[out_rows] = X[X_rows, :].toarray() |
|
|
|
assign_rows_csr(X, X_rows, out_rows, out) |
|
assert_array_equal(out, expect) |
|
|
|
|
|
def test_inplace_column_scale(): |
|
rng = np.random.RandomState(0) |
|
X = sp.rand(100, 200, 0.05) |
|
Xr = X.tocsr() |
|
Xc = X.tocsc() |
|
XA = X.toarray() |
|
scale = rng.rand(200) |
|
XA *= scale |
|
|
|
inplace_column_scale(Xc, scale) |
|
inplace_column_scale(Xr, scale) |
|
assert_array_almost_equal(Xr.toarray(), Xc.toarray()) |
|
assert_array_almost_equal(XA, Xc.toarray()) |
|
assert_array_almost_equal(XA, Xr.toarray()) |
|
with pytest.raises(TypeError): |
|
inplace_column_scale(X.tolil(), scale) |
|
|
|
X = X.astype(np.float32) |
|
scale = scale.astype(np.float32) |
|
Xr = X.tocsr() |
|
Xc = X.tocsc() |
|
XA = X.toarray() |
|
XA *= scale |
|
inplace_column_scale(Xc, scale) |
|
inplace_column_scale(Xr, scale) |
|
assert_array_almost_equal(Xr.toarray(), Xc.toarray()) |
|
assert_array_almost_equal(XA, Xc.toarray()) |
|
assert_array_almost_equal(XA, Xr.toarray()) |
|
with pytest.raises(TypeError): |
|
inplace_column_scale(X.tolil(), scale) |
|
|
|
|
|
def test_inplace_row_scale(): |
|
rng = np.random.RandomState(0) |
|
X = sp.rand(100, 200, 0.05) |
|
Xr = X.tocsr() |
|
Xc = X.tocsc() |
|
XA = X.toarray() |
|
scale = rng.rand(100) |
|
XA *= scale.reshape(-1, 1) |
|
|
|
inplace_row_scale(Xc, scale) |
|
inplace_row_scale(Xr, scale) |
|
assert_array_almost_equal(Xr.toarray(), Xc.toarray()) |
|
assert_array_almost_equal(XA, Xc.toarray()) |
|
assert_array_almost_equal(XA, Xr.toarray()) |
|
with pytest.raises(TypeError): |
|
inplace_column_scale(X.tolil(), scale) |
|
|
|
X = X.astype(np.float32) |
|
scale = scale.astype(np.float32) |
|
Xr = X.tocsr() |
|
Xc = X.tocsc() |
|
XA = X.toarray() |
|
XA *= scale.reshape(-1, 1) |
|
inplace_row_scale(Xc, scale) |
|
inplace_row_scale(Xr, scale) |
|
assert_array_almost_equal(Xr.toarray(), Xc.toarray()) |
|
assert_array_almost_equal(XA, Xc.toarray()) |
|
assert_array_almost_equal(XA, Xr.toarray()) |
|
with pytest.raises(TypeError): |
|
inplace_column_scale(X.tolil(), scale) |
|
|
|
|
|
@pytest.mark.parametrize("csc_container", CSC_CONTAINERS) |
|
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS) |
|
def test_inplace_swap_row(csc_container, csr_container): |
|
X = np.array( |
|
[[0, 3, 0], [2, 4, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float64 |
|
) |
|
X_csr = csr_container(X) |
|
X_csc = csc_container(X) |
|
|
|
swap = linalg.get_blas_funcs(("swap",), (X,)) |
|
swap = swap[0] |
|
X[0], X[-1] = swap(X[0], X[-1]) |
|
inplace_swap_row(X_csr, 0, -1) |
|
inplace_swap_row(X_csc, 0, -1) |
|
assert_array_equal(X_csr.toarray(), X_csc.toarray()) |
|
assert_array_equal(X, X_csc.toarray()) |
|
assert_array_equal(X, X_csr.toarray()) |
|
|
|
X[2], X[3] = swap(X[2], X[3]) |
|
inplace_swap_row(X_csr, 2, 3) |
|
inplace_swap_row(X_csc, 2, 3) |
|
assert_array_equal(X_csr.toarray(), X_csc.toarray()) |
|
assert_array_equal(X, X_csc.toarray()) |
|
assert_array_equal(X, X_csr.toarray()) |
|
with pytest.raises(TypeError): |
|
inplace_swap_row(X_csr.tolil()) |
|
|
|
X = np.array( |
|
[[0, 3, 0], [2, 4, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float32 |
|
) |
|
X_csr = csr_container(X) |
|
X_csc = csc_container(X) |
|
swap = linalg.get_blas_funcs(("swap",), (X,)) |
|
swap = swap[0] |
|
X[0], X[-1] = swap(X[0], X[-1]) |
|
inplace_swap_row(X_csr, 0, -1) |
|
inplace_swap_row(X_csc, 0, -1) |
|
assert_array_equal(X_csr.toarray(), X_csc.toarray()) |
|
assert_array_equal(X, X_csc.toarray()) |
|
assert_array_equal(X, X_csr.toarray()) |
|
X[2], X[3] = swap(X[2], X[3]) |
|
inplace_swap_row(X_csr, 2, 3) |
|
inplace_swap_row(X_csc, 2, 3) |
|
assert_array_equal(X_csr.toarray(), X_csc.toarray()) |
|
assert_array_equal(X, X_csc.toarray()) |
|
assert_array_equal(X, X_csr.toarray()) |
|
with pytest.raises(TypeError): |
|
inplace_swap_row(X_csr.tolil()) |
|
|
|
|
|
@pytest.mark.parametrize("csc_container", CSC_CONTAINERS) |
|
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS) |
|
def test_inplace_swap_column(csc_container, csr_container): |
|
X = np.array( |
|
[[0, 3, 0], [2, 4, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float64 |
|
) |
|
X_csr = csr_container(X) |
|
X_csc = csc_container(X) |
|
|
|
swap = linalg.get_blas_funcs(("swap",), (X,)) |
|
swap = swap[0] |
|
X[:, 0], X[:, -1] = swap(X[:, 0], X[:, -1]) |
|
inplace_swap_column(X_csr, 0, -1) |
|
inplace_swap_column(X_csc, 0, -1) |
|
assert_array_equal(X_csr.toarray(), X_csc.toarray()) |
|
assert_array_equal(X, X_csc.toarray()) |
|
assert_array_equal(X, X_csr.toarray()) |
|
|
|
X[:, 0], X[:, 1] = swap(X[:, 0], X[:, 1]) |
|
inplace_swap_column(X_csr, 0, 1) |
|
inplace_swap_column(X_csc, 0, 1) |
|
assert_array_equal(X_csr.toarray(), X_csc.toarray()) |
|
assert_array_equal(X, X_csc.toarray()) |
|
assert_array_equal(X, X_csr.toarray()) |
|
with pytest.raises(TypeError): |
|
inplace_swap_column(X_csr.tolil()) |
|
|
|
X = np.array( |
|
[[0, 3, 0], [2, 4, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float32 |
|
) |
|
X_csr = csr_container(X) |
|
X_csc = csc_container(X) |
|
swap = linalg.get_blas_funcs(("swap",), (X,)) |
|
swap = swap[0] |
|
X[:, 0], X[:, -1] = swap(X[:, 0], X[:, -1]) |
|
inplace_swap_column(X_csr, 0, -1) |
|
inplace_swap_column(X_csc, 0, -1) |
|
assert_array_equal(X_csr.toarray(), X_csc.toarray()) |
|
assert_array_equal(X, X_csc.toarray()) |
|
assert_array_equal(X, X_csr.toarray()) |
|
X[:, 0], X[:, 1] = swap(X[:, 0], X[:, 1]) |
|
inplace_swap_column(X_csr, 0, 1) |
|
inplace_swap_column(X_csc, 0, 1) |
|
assert_array_equal(X_csr.toarray(), X_csc.toarray()) |
|
assert_array_equal(X, X_csc.toarray()) |
|
assert_array_equal(X, X_csr.toarray()) |
|
with pytest.raises(TypeError): |
|
inplace_swap_column(X_csr.tolil()) |
|
|
|
|
|
@pytest.mark.parametrize("dtype", [np.float32, np.float64]) |
|
@pytest.mark.parametrize("axis", [0, 1, None]) |
|
@pytest.mark.parametrize("sparse_format", CSC_CONTAINERS + CSR_CONTAINERS) |
|
@pytest.mark.parametrize( |
|
"missing_values, min_func, max_func, ignore_nan", |
|
[(0, np.min, np.max, False), (np.nan, np.nanmin, np.nanmax, True)], |
|
) |
|
@pytest.mark.parametrize("large_indices", [True, False]) |
|
def test_min_max( |
|
dtype, |
|
axis, |
|
sparse_format, |
|
missing_values, |
|
min_func, |
|
max_func, |
|
ignore_nan, |
|
large_indices, |
|
): |
|
X = np.array( |
|
[ |
|
[0, 3, 0], |
|
[2, -1, missing_values], |
|
[0, 0, 0], |
|
[9, missing_values, 7], |
|
[4, 0, 5], |
|
], |
|
dtype=dtype, |
|
) |
|
X_sparse = sparse_format(X) |
|
|
|
if large_indices: |
|
X_sparse.indices = X_sparse.indices.astype("int64") |
|
X_sparse.indptr = X_sparse.indptr.astype("int64") |
|
|
|
mins_sparse, maxs_sparse = min_max_axis(X_sparse, axis=axis, ignore_nan=ignore_nan) |
|
assert_array_equal(mins_sparse, min_func(X, axis=axis)) |
|
assert_array_equal(maxs_sparse, max_func(X, axis=axis)) |
|
|
|
|
|
@pytest.mark.parametrize("csc_container", CSC_CONTAINERS) |
|
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS) |
|
def test_min_max_axis_errors(csc_container, csr_container): |
|
X = np.array( |
|
[[0, 3, 0], [2, -1, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float64 |
|
) |
|
X_csr = csr_container(X) |
|
X_csc = csc_container(X) |
|
with pytest.raises(TypeError): |
|
min_max_axis(X_csr.tolil(), axis=0) |
|
with pytest.raises(ValueError): |
|
min_max_axis(X_csr, axis=2) |
|
with pytest.raises(ValueError): |
|
min_max_axis(X_csc, axis=-3) |
|
|
|
|
|
@pytest.mark.parametrize("csc_container", CSC_CONTAINERS) |
|
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS) |
|
def test_count_nonzero(csc_container, csr_container): |
|
X = np.array( |
|
[[0, 3, 0], [2, -1, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float64 |
|
) |
|
X_csr = csr_container(X) |
|
X_csc = csc_container(X) |
|
X_nonzero = X != 0 |
|
sample_weight = [0.5, 0.2, 0.3, 0.1, 0.1] |
|
X_nonzero_weighted = X_nonzero * np.array(sample_weight)[:, None] |
|
|
|
for axis in [0, 1, -1, -2, None]: |
|
assert_array_almost_equal( |
|
count_nonzero(X_csr, axis=axis), X_nonzero.sum(axis=axis) |
|
) |
|
assert_array_almost_equal( |
|
count_nonzero(X_csr, axis=axis, sample_weight=sample_weight), |
|
X_nonzero_weighted.sum(axis=axis), |
|
) |
|
|
|
with pytest.raises(TypeError): |
|
count_nonzero(X_csc) |
|
with pytest.raises(ValueError): |
|
count_nonzero(X_csr, axis=2) |
|
|
|
assert count_nonzero(X_csr, axis=0).dtype == count_nonzero(X_csr, axis=1).dtype |
|
assert ( |
|
count_nonzero(X_csr, axis=0, sample_weight=sample_weight).dtype |
|
== count_nonzero(X_csr, axis=1, sample_weight=sample_weight).dtype |
|
) |
|
|
|
|
|
|
|
try: |
|
X_csr.indices = X_csr.indices.astype(np.int64) |
|
X_csr.indptr = X_csr.indptr.astype(np.int64) |
|
assert count_nonzero(X_csr, axis=0).dtype == count_nonzero(X_csr, axis=1).dtype |
|
assert ( |
|
count_nonzero(X_csr, axis=0, sample_weight=sample_weight).dtype |
|
== count_nonzero(X_csr, axis=1, sample_weight=sample_weight).dtype |
|
) |
|
except TypeError as e: |
|
assert "according to the rule 'safe'" in e.args[0] and np.intp().nbytes < 8, e |
|
|
|
|
|
@pytest.mark.parametrize("csc_container", CSC_CONTAINERS) |
|
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS) |
|
def test_csc_row_median(csc_container, csr_container): |
|
|
|
|
|
|
|
rng = np.random.RandomState(0) |
|
X = rng.rand(100, 50) |
|
dense_median = np.median(X, axis=0) |
|
csc = csc_container(X) |
|
sparse_median = csc_median_axis_0(csc) |
|
assert_array_equal(sparse_median, dense_median) |
|
|
|
|
|
X = rng.rand(51, 100) |
|
X[X < 0.7] = 0.0 |
|
ind = rng.randint(0, 50, 10) |
|
X[ind] = -X[ind] |
|
csc = csc_container(X) |
|
dense_median = np.median(X, axis=0) |
|
sparse_median = csc_median_axis_0(csc) |
|
assert_array_equal(sparse_median, dense_median) |
|
|
|
|
|
X = [[0, -2], [-1, -1], [1, 0], [2, 1]] |
|
csc = csc_container(X) |
|
assert_array_equal(csc_median_axis_0(csc), np.array([0.5, -0.5])) |
|
X = [[0, -2], [-1, -5], [1, -3]] |
|
csc = csc_container(X) |
|
assert_array_equal(csc_median_axis_0(csc), np.array([0.0, -3])) |
|
|
|
|
|
with pytest.raises(TypeError): |
|
csc_median_axis_0(csr_container(X)) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"inplace_csr_row_normalize", |
|
(inplace_csr_row_normalize_l1, inplace_csr_row_normalize_l2), |
|
) |
|
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS) |
|
def test_inplace_normalize(csr_container, inplace_csr_row_normalize): |
|
if csr_container is sp.csr_matrix: |
|
ones = np.ones((10, 1)) |
|
else: |
|
ones = np.ones(10) |
|
rs = RandomState(10) |
|
|
|
for dtype in (np.float64, np.float32): |
|
X = rs.randn(10, 5).astype(dtype) |
|
X_csr = csr_container(X) |
|
for index_dtype in [np.int32, np.int64]: |
|
|
|
|
|
if index_dtype is np.int64: |
|
X_csr.indptr = X_csr.indptr.astype(index_dtype) |
|
X_csr.indices = X_csr.indices.astype(index_dtype) |
|
assert X_csr.indices.dtype == index_dtype |
|
assert X_csr.indptr.dtype == index_dtype |
|
inplace_csr_row_normalize(X_csr) |
|
assert X_csr.dtype == dtype |
|
if inplace_csr_row_normalize is inplace_csr_row_normalize_l2: |
|
X_csr.data **= 2 |
|
assert_array_almost_equal(np.abs(X_csr).sum(axis=1), ones) |
|
|
|
|
|
@pytest.mark.parametrize("dtype", [np.float32, np.float64]) |
|
def test_csr_row_norms(dtype): |
|
|
|
|
|
X = sp.random(100, 10, format="csr", dtype=dtype, random_state=42) |
|
|
|
scipy_norms = sp.linalg.norm(X, axis=1) ** 2 |
|
norms = csr_row_norms(X) |
|
|
|
assert norms.dtype == dtype |
|
rtol = 1e-6 if dtype == np.float32 else 1e-7 |
|
assert_allclose(norms, scipy_norms, rtol=rtol) |
|
|
|
|
|
@pytest.fixture(scope="module", params=CSR_CONTAINERS + CSC_CONTAINERS) |
|
def centered_matrices(request): |
|
"""Returns equivalent tuple[sp.linalg.LinearOperator, np.ndarray].""" |
|
sparse_container = request.param |
|
|
|
random_state = np.random.default_rng(42) |
|
|
|
X_sparse = sparse_container( |
|
sp.random(500, 100, density=0.1, format="csr", random_state=random_state) |
|
) |
|
X_dense = X_sparse.toarray() |
|
mu = np.asarray(X_sparse.mean(axis=0)).ravel() |
|
|
|
X_sparse_centered = _implicit_column_offset(X_sparse, mu) |
|
X_dense_centered = X_dense - mu |
|
|
|
return X_sparse_centered, X_dense_centered |
|
|
|
|
|
def test_implicit_center_matmat(global_random_seed, centered_matrices): |
|
X_sparse_centered, X_dense_centered = centered_matrices |
|
rng = np.random.default_rng(global_random_seed) |
|
Y = rng.standard_normal((X_dense_centered.shape[1], 50)) |
|
assert_allclose(X_dense_centered @ Y, X_sparse_centered.matmat(Y)) |
|
assert_allclose(X_dense_centered @ Y, X_sparse_centered @ Y) |
|
|
|
|
|
def test_implicit_center_matvec(global_random_seed, centered_matrices): |
|
X_sparse_centered, X_dense_centered = centered_matrices |
|
rng = np.random.default_rng(global_random_seed) |
|
y = rng.standard_normal(X_dense_centered.shape[1]) |
|
assert_allclose(X_dense_centered @ y, X_sparse_centered.matvec(y)) |
|
assert_allclose(X_dense_centered @ y, X_sparse_centered @ y) |
|
|
|
|
|
def test_implicit_center_rmatmat(global_random_seed, centered_matrices): |
|
X_sparse_centered, X_dense_centered = centered_matrices |
|
rng = np.random.default_rng(global_random_seed) |
|
Y = rng.standard_normal((X_dense_centered.shape[0], 50)) |
|
assert_allclose(X_dense_centered.T @ Y, X_sparse_centered.rmatmat(Y)) |
|
assert_allclose(X_dense_centered.T @ Y, X_sparse_centered.T @ Y) |
|
|
|
|
|
def test_implit_center_rmatvec(global_random_seed, centered_matrices): |
|
X_sparse_centered, X_dense_centered = centered_matrices |
|
rng = np.random.default_rng(global_random_seed) |
|
y = rng.standard_normal(X_dense_centered.shape[0]) |
|
assert_allclose(X_dense_centered.T @ y, X_sparse_centered.rmatvec(y)) |
|
assert_allclose(X_dense_centered.T @ y, X_sparse_centered.T @ y) |
|
|