spam-classifier
/
venv
/lib
/python3.11
/site-packages
/sklearn
/preprocessing
/tests
/test_label.py
import numpy as np | |
import pytest | |
from scipy.sparse import issparse | |
from sklearn import config_context, datasets | |
from sklearn.preprocessing._label import ( | |
LabelBinarizer, | |
LabelEncoder, | |
MultiLabelBinarizer, | |
_inverse_binarize_multiclass, | |
_inverse_binarize_thresholding, | |
label_binarize, | |
) | |
from sklearn.utils._array_api import ( | |
_convert_to_numpy, | |
get_namespace, | |
yield_namespace_device_dtype_combinations, | |
) | |
from sklearn.utils._testing import ( | |
_array_api_for_tests, | |
assert_array_equal, | |
) | |
from sklearn.utils.fixes import ( | |
COO_CONTAINERS, | |
CSC_CONTAINERS, | |
CSR_CONTAINERS, | |
DOK_CONTAINERS, | |
LIL_CONTAINERS, | |
) | |
from sklearn.utils.multiclass import type_of_target | |
from sklearn.utils.validation import _to_object_array | |
iris = datasets.load_iris() | |
def toarray(a): | |
if hasattr(a, "toarray"): | |
a = a.toarray() | |
return a | |
def test_label_binarizer(): | |
# one-class case defaults to negative label | |
# For dense case: | |
inp = ["pos", "pos", "pos", "pos"] | |
lb = LabelBinarizer(sparse_output=False) | |
expected = np.array([[0, 0, 0, 0]]).T | |
got = lb.fit_transform(inp) | |
assert_array_equal(lb.classes_, ["pos"]) | |
assert_array_equal(expected, got) | |
assert_array_equal(lb.inverse_transform(got), inp) | |
# For sparse case: | |
lb = LabelBinarizer(sparse_output=True) | |
got = lb.fit_transform(inp) | |
assert issparse(got) | |
assert_array_equal(lb.classes_, ["pos"]) | |
assert_array_equal(expected, got.toarray()) | |
assert_array_equal(lb.inverse_transform(got.toarray()), inp) | |
lb = LabelBinarizer(sparse_output=False) | |
# two-class case | |
inp = ["neg", "pos", "pos", "neg"] | |
expected = np.array([[0, 1, 1, 0]]).T | |
got = lb.fit_transform(inp) | |
assert_array_equal(lb.classes_, ["neg", "pos"]) | |
assert_array_equal(expected, got) | |
to_invert = np.array([[1, 0], [0, 1], [0, 1], [1, 0]]) | |
assert_array_equal(lb.inverse_transform(to_invert), inp) | |
# multi-class case | |
inp = ["spam", "ham", "eggs", "ham", "0"] | |
expected = np.array( | |
[[0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 1, 0], [1, 0, 0, 0]] | |
) | |
got = lb.fit_transform(inp) | |
assert_array_equal(lb.classes_, ["0", "eggs", "ham", "spam"]) | |
assert_array_equal(expected, got) | |
assert_array_equal(lb.inverse_transform(got), inp) | |
def test_label_binarizer_unseen_labels(): | |
lb = LabelBinarizer() | |
expected = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) | |
got = lb.fit_transform(["b", "d", "e"]) | |
assert_array_equal(expected, got) | |
expected = np.array( | |
[[0, 0, 0], [1, 0, 0], [0, 0, 0], [0, 1, 0], [0, 0, 1], [0, 0, 0]] | |
) | |
got = lb.transform(["a", "b", "c", "d", "e", "f"]) | |
assert_array_equal(expected, got) | |
def test_label_binarizer_set_label_encoding(): | |
lb = LabelBinarizer(neg_label=-2, pos_label=0) | |
# two-class case with pos_label=0 | |
inp = np.array([0, 1, 1, 0]) | |
expected = np.array([[-2, 0, 0, -2]]).T | |
got = lb.fit_transform(inp) | |
assert_array_equal(expected, got) | |
assert_array_equal(lb.inverse_transform(got), inp) | |
lb = LabelBinarizer(neg_label=-2, pos_label=2) | |
# multi-class case | |
inp = np.array([3, 2, 1, 2, 0]) | |
expected = np.array( | |
[ | |
[-2, -2, -2, +2], | |
[-2, -2, +2, -2], | |
[-2, +2, -2, -2], | |
[-2, -2, +2, -2], | |
[+2, -2, -2, -2], | |
] | |
) | |
got = lb.fit_transform(inp) | |
assert_array_equal(expected, got) | |
assert_array_equal(lb.inverse_transform(got), inp) | |
def test_label_binarizer_pandas_nullable(dtype, unique_first): | |
"""Checks that LabelBinarizer works with pandas nullable dtypes. | |
Non-regression test for gh-25637. | |
""" | |
pd = pytest.importorskip("pandas") | |
y_true = pd.Series([1, 0, 0, 1, 0, 1, 1, 0, 1], dtype=dtype) | |
if unique_first: | |
# Calling unique creates a pandas array which has a different interface | |
# compared to a pandas Series. Specifically, pandas arrays do not have "iloc". | |
y_true = y_true.unique() | |
lb = LabelBinarizer().fit(y_true) | |
y_out = lb.transform([1, 0]) | |
assert_array_equal(y_out, [[1], [0]]) | |
def test_label_binarizer_errors(): | |
# Check that invalid arguments yield ValueError | |
one_class = np.array([0, 0, 0, 0]) | |
lb = LabelBinarizer().fit(one_class) | |
multi_label = [(2, 3), (0,), (0, 2)] | |
err_msg = "You appear to be using a legacy multi-label data representation." | |
with pytest.raises(ValueError, match=err_msg): | |
lb.transform(multi_label) | |
lb = LabelBinarizer() | |
err_msg = "This LabelBinarizer instance is not fitted yet" | |
with pytest.raises(ValueError, match=err_msg): | |
lb.transform([]) | |
with pytest.raises(ValueError, match=err_msg): | |
lb.inverse_transform([]) | |
input_labels = [0, 1, 0, 1] | |
err_msg = "neg_label=2 must be strictly less than pos_label=1." | |
lb = LabelBinarizer(neg_label=2, pos_label=1) | |
with pytest.raises(ValueError, match=err_msg): | |
lb.fit(input_labels) | |
err_msg = "neg_label=2 must be strictly less than pos_label=2." | |
lb = LabelBinarizer(neg_label=2, pos_label=2) | |
with pytest.raises(ValueError, match=err_msg): | |
lb.fit(input_labels) | |
err_msg = ( | |
"Sparse binarization is only supported with non zero pos_label and zero " | |
"neg_label, got pos_label=2 and neg_label=1" | |
) | |
lb = LabelBinarizer(neg_label=1, pos_label=2, sparse_output=True) | |
with pytest.raises(ValueError, match=err_msg): | |
lb.fit(input_labels) | |
# Sequence of seq type should raise ValueError | |
y_seq_of_seqs = [[], [1, 2], [3], [0, 1, 3], [2]] | |
err_msg = "You appear to be using a legacy multi-label data representation" | |
with pytest.raises(ValueError, match=err_msg): | |
LabelBinarizer().fit_transform(y_seq_of_seqs) | |
# Fail on the dimension of 'binary' | |
err_msg = "output_type='binary', but y.shape" | |
with pytest.raises(ValueError, match=err_msg): | |
_inverse_binarize_thresholding( | |
y=np.array([[1, 2, 3], [2, 1, 3]]), | |
output_type="binary", | |
classes=[1, 2, 3], | |
threshold=0, | |
) | |
# Fail on multioutput data | |
err_msg = "Multioutput target data is not supported with label binarization" | |
with pytest.raises(ValueError, match=err_msg): | |
LabelBinarizer().fit(np.array([[1, 3], [2, 1]])) | |
with pytest.raises(ValueError, match=err_msg): | |
label_binarize(np.array([[1, 3], [2, 1]]), classes=[1, 2, 3]) | |
def test_label_binarizer_sparse_errors(csr_container): | |
# Fail on y_type | |
err_msg = "foo format is not supported" | |
with pytest.raises(ValueError, match=err_msg): | |
_inverse_binarize_thresholding( | |
y=csr_container([[1, 2], [2, 1]]), | |
output_type="foo", | |
classes=[1, 2], | |
threshold=0, | |
) | |
# Fail on the number of classes | |
err_msg = "The number of class is not equal to the number of dimension of y." | |
with pytest.raises(ValueError, match=err_msg): | |
_inverse_binarize_thresholding( | |
y=csr_container([[1, 2], [2, 1]]), | |
output_type="foo", | |
classes=[1, 2, 3], | |
threshold=0, | |
) | |
def test_label_encoder(values, classes, unknown): | |
# Test LabelEncoder's transform, fit_transform and | |
# inverse_transform methods | |
le = LabelEncoder() | |
le.fit(values) | |
assert_array_equal(le.classes_, classes) | |
assert_array_equal(le.transform(values), [1, 0, 2, 0, 2]) | |
assert_array_equal(le.inverse_transform([1, 0, 2, 0, 2]), values) | |
le = LabelEncoder() | |
ret = le.fit_transform(values) | |
assert_array_equal(ret, [1, 0, 2, 0, 2]) | |
with pytest.raises(ValueError, match="unseen labels"): | |
le.transform(unknown) | |
def test_label_encoder_negative_ints(): | |
le = LabelEncoder() | |
le.fit([1, 1, 4, 5, -1, 0]) | |
assert_array_equal(le.classes_, [-1, 0, 1, 4, 5]) | |
assert_array_equal(le.transform([0, 1, 4, 4, 5, -1, -1]), [1, 2, 3, 3, 4, 0, 0]) | |
assert_array_equal( | |
le.inverse_transform([1, 2, 3, 3, 4, 0, 0]), [0, 1, 4, 4, 5, -1, -1] | |
) | |
with pytest.raises(ValueError): | |
le.transform([0, 6]) | |
def test_label_encoder_str_bad_shape(dtype): | |
le = LabelEncoder() | |
le.fit(np.array(["apple", "orange"], dtype=dtype)) | |
msg = "should be a 1d array" | |
with pytest.raises(ValueError, match=msg): | |
le.transform("apple") | |
def test_label_encoder_errors(): | |
# Check that invalid arguments yield ValueError | |
le = LabelEncoder() | |
with pytest.raises(ValueError): | |
le.transform([]) | |
with pytest.raises(ValueError): | |
le.inverse_transform([]) | |
# Fail on unseen labels | |
le = LabelEncoder() | |
le.fit([1, 2, 3, -1, 1]) | |
msg = "contains previously unseen labels" | |
with pytest.raises(ValueError, match=msg): | |
le.inverse_transform([-2]) | |
with pytest.raises(ValueError, match=msg): | |
le.inverse_transform([-2, -3, -4]) | |
# Fail on inverse_transform("") | |
msg = r"should be a 1d array.+shape \(\)" | |
with pytest.raises(ValueError, match=msg): | |
le.inverse_transform("") | |
def test_label_encoder_empty_array(values): | |
le = LabelEncoder() | |
le.fit(values) | |
# test empty transform | |
transformed = le.transform([]) | |
assert_array_equal(np.array([]), transformed) | |
# test empty inverse transform | |
inverse_transformed = le.inverse_transform([]) | |
assert_array_equal(np.array([]), inverse_transformed) | |
def test_sparse_output_multilabel_binarizer(): | |
# test input as iterable of iterables | |
inputs = [ | |
lambda: [(2, 3), (1,), (1, 2)], | |
lambda: ({2, 3}, {1}, {1, 2}), | |
lambda: iter([iter((2, 3)), iter((1,)), {1, 2}]), | |
] | |
indicator_mat = np.array([[0, 1, 1], [1, 0, 0], [1, 1, 0]]) | |
inverse = inputs[0]() | |
for sparse_output in [True, False]: | |
for inp in inputs: | |
# With fit_transform | |
mlb = MultiLabelBinarizer(sparse_output=sparse_output) | |
got = mlb.fit_transform(inp()) | |
assert issparse(got) == sparse_output | |
if sparse_output: | |
# verify CSR assumption that indices and indptr have same dtype | |
assert got.indices.dtype == got.indptr.dtype | |
got = got.toarray() | |
assert_array_equal(indicator_mat, got) | |
assert_array_equal([1, 2, 3], mlb.classes_) | |
assert mlb.inverse_transform(got) == inverse | |
# With fit | |
mlb = MultiLabelBinarizer(sparse_output=sparse_output) | |
got = mlb.fit(inp()).transform(inp()) | |
assert issparse(got) == sparse_output | |
if sparse_output: | |
# verify CSR assumption that indices and indptr have same dtype | |
assert got.indices.dtype == got.indptr.dtype | |
got = got.toarray() | |
assert_array_equal(indicator_mat, got) | |
assert_array_equal([1, 2, 3], mlb.classes_) | |
assert mlb.inverse_transform(got) == inverse | |
def test_sparse_output_multilabel_binarizer_errors(csr_container): | |
inp = iter([iter((2, 3)), iter((1,)), {1, 2}]) | |
mlb = MultiLabelBinarizer(sparse_output=False) | |
mlb.fit(inp) | |
with pytest.raises(ValueError): | |
mlb.inverse_transform( | |
csr_container(np.array([[0, 1, 1], [2, 0, 0], [1, 1, 0]])) | |
) | |
def test_multilabel_binarizer(): | |
# test input as iterable of iterables | |
inputs = [ | |
lambda: [(2, 3), (1,), (1, 2)], | |
lambda: ({2, 3}, {1}, {1, 2}), | |
lambda: iter([iter((2, 3)), iter((1,)), {1, 2}]), | |
] | |
indicator_mat = np.array([[0, 1, 1], [1, 0, 0], [1, 1, 0]]) | |
inverse = inputs[0]() | |
for inp in inputs: | |
# With fit_transform | |
mlb = MultiLabelBinarizer() | |
got = mlb.fit_transform(inp()) | |
assert_array_equal(indicator_mat, got) | |
assert_array_equal([1, 2, 3], mlb.classes_) | |
assert mlb.inverse_transform(got) == inverse | |
# With fit | |
mlb = MultiLabelBinarizer() | |
got = mlb.fit(inp()).transform(inp()) | |
assert_array_equal(indicator_mat, got) | |
assert_array_equal([1, 2, 3], mlb.classes_) | |
assert mlb.inverse_transform(got) == inverse | |
def test_multilabel_binarizer_empty_sample(): | |
mlb = MultiLabelBinarizer() | |
y = [[1, 2], [1], []] | |
Y = np.array([[1, 1], [1, 0], [0, 0]]) | |
assert_array_equal(mlb.fit_transform(y), Y) | |
def test_multilabel_binarizer_unknown_class(): | |
mlb = MultiLabelBinarizer() | |
y = [[1, 2]] | |
Y = np.array([[1, 0], [0, 1]]) | |
warning_message = "unknown class.* will be ignored" | |
with pytest.warns(UserWarning, match=warning_message): | |
matrix = mlb.fit(y).transform([[4, 1], [2, 0]]) | |
Y = np.array([[1, 0, 0], [0, 1, 0]]) | |
mlb = MultiLabelBinarizer(classes=[1, 2, 3]) | |
with pytest.warns(UserWarning, match=warning_message): | |
matrix = mlb.fit(y).transform([[4, 1], [2, 0]]) | |
assert_array_equal(matrix, Y) | |
def test_multilabel_binarizer_given_classes(): | |
inp = [(2, 3), (1,), (1, 2)] | |
indicator_mat = np.array([[0, 1, 1], [1, 0, 0], [1, 0, 1]]) | |
# fit_transform() | |
mlb = MultiLabelBinarizer(classes=[1, 3, 2]) | |
assert_array_equal(mlb.fit_transform(inp), indicator_mat) | |
assert_array_equal(mlb.classes_, [1, 3, 2]) | |
# fit().transform() | |
mlb = MultiLabelBinarizer(classes=[1, 3, 2]) | |
assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat) | |
assert_array_equal(mlb.classes_, [1, 3, 2]) | |
# ensure works with extra class | |
mlb = MultiLabelBinarizer(classes=[4, 1, 3, 2]) | |
assert_array_equal( | |
mlb.fit_transform(inp), np.hstack(([[0], [0], [0]], indicator_mat)) | |
) | |
assert_array_equal(mlb.classes_, [4, 1, 3, 2]) | |
# ensure fit is no-op as iterable is not consumed | |
inp = iter(inp) | |
mlb = MultiLabelBinarizer(classes=[1, 3, 2]) | |
assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat) | |
# ensure a ValueError is thrown if given duplicate classes | |
err_msg = ( | |
"The classes argument contains duplicate classes. Remove " | |
"these duplicates before passing them to MultiLabelBinarizer." | |
) | |
mlb = MultiLabelBinarizer(classes=[1, 3, 2, 3]) | |
with pytest.raises(ValueError, match=err_msg): | |
mlb.fit(inp) | |
def test_multilabel_binarizer_multiple_calls(): | |
inp = [(2, 3), (1,), (1, 2)] | |
indicator_mat = np.array([[0, 1, 1], [1, 0, 0], [1, 0, 1]]) | |
indicator_mat2 = np.array([[0, 1, 1], [1, 0, 0], [1, 1, 0]]) | |
# first call | |
mlb = MultiLabelBinarizer(classes=[1, 3, 2]) | |
assert_array_equal(mlb.fit_transform(inp), indicator_mat) | |
# second call change class | |
mlb.classes = [1, 2, 3] | |
assert_array_equal(mlb.fit_transform(inp), indicator_mat2) | |
def test_multilabel_binarizer_same_length_sequence(): | |
# Ensure sequences of the same length are not interpreted as a 2-d array | |
inp = [[1], [0], [2]] | |
indicator_mat = np.array([[0, 1, 0], [1, 0, 0], [0, 0, 1]]) | |
# fit_transform() | |
mlb = MultiLabelBinarizer() | |
assert_array_equal(mlb.fit_transform(inp), indicator_mat) | |
assert_array_equal(mlb.inverse_transform(indicator_mat), inp) | |
# fit().transform() | |
mlb = MultiLabelBinarizer() | |
assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat) | |
assert_array_equal(mlb.inverse_transform(indicator_mat), inp) | |
def test_multilabel_binarizer_non_integer_labels(): | |
tuple_classes = _to_object_array([(1,), (2,), (3,)]) | |
inputs = [ | |
([("2", "3"), ("1",), ("1", "2")], ["1", "2", "3"]), | |
([("b", "c"), ("a",), ("a", "b")], ["a", "b", "c"]), | |
([((2,), (3,)), ((1,),), ((1,), (2,))], tuple_classes), | |
] | |
indicator_mat = np.array([[0, 1, 1], [1, 0, 0], [1, 1, 0]]) | |
for inp, classes in inputs: | |
# fit_transform() | |
mlb = MultiLabelBinarizer() | |
inp = np.array(inp, dtype=object) | |
assert_array_equal(mlb.fit_transform(inp), indicator_mat) | |
assert_array_equal(mlb.classes_, classes) | |
indicator_mat_inv = np.array(mlb.inverse_transform(indicator_mat), dtype=object) | |
assert_array_equal(indicator_mat_inv, inp) | |
# fit().transform() | |
mlb = MultiLabelBinarizer() | |
assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat) | |
assert_array_equal(mlb.classes_, classes) | |
indicator_mat_inv = np.array(mlb.inverse_transform(indicator_mat), dtype=object) | |
assert_array_equal(indicator_mat_inv, inp) | |
mlb = MultiLabelBinarizer() | |
with pytest.raises(TypeError): | |
mlb.fit_transform([({}), ({}, {"a": "b"})]) | |
def test_multilabel_binarizer_non_unique(): | |
inp = [(1, 1, 1, 0)] | |
indicator_mat = np.array([[1, 1]]) | |
mlb = MultiLabelBinarizer() | |
assert_array_equal(mlb.fit_transform(inp), indicator_mat) | |
def test_multilabel_binarizer_inverse_validation(): | |
inp = [(1, 1, 1, 0)] | |
mlb = MultiLabelBinarizer() | |
mlb.fit_transform(inp) | |
# Not binary | |
with pytest.raises(ValueError): | |
mlb.inverse_transform(np.array([[1, 3]])) | |
# The following binary cases are fine, however | |
mlb.inverse_transform(np.array([[0, 0]])) | |
mlb.inverse_transform(np.array([[1, 1]])) | |
mlb.inverse_transform(np.array([[1, 0]])) | |
# Wrong shape | |
with pytest.raises(ValueError): | |
mlb.inverse_transform(np.array([[1]])) | |
with pytest.raises(ValueError): | |
mlb.inverse_transform(np.array([[1, 1, 1]])) | |
def test_label_binarize_with_class_order(): | |
out = label_binarize([1, 6], classes=[1, 2, 4, 6]) | |
expected = np.array([[1, 0, 0, 0], [0, 0, 0, 1]]) | |
assert_array_equal(out, expected) | |
# Modified class order | |
out = label_binarize([1, 6], classes=[1, 6, 4, 2]) | |
expected = np.array([[1, 0, 0, 0], [0, 1, 0, 0]]) | |
assert_array_equal(out, expected) | |
out = label_binarize([0, 1, 2, 3], classes=[3, 2, 0, 1]) | |
expected = np.array([[0, 0, 1, 0], [0, 0, 0, 1], [0, 1, 0, 0], [1, 0, 0, 0]]) | |
assert_array_equal(out, expected) | |
def check_binarized_results(y, classes, pos_label, neg_label, expected): | |
for sparse_output in [True, False]: | |
if (pos_label == 0 or neg_label != 0) and sparse_output: | |
with pytest.raises(ValueError): | |
label_binarize( | |
y, | |
classes=classes, | |
neg_label=neg_label, | |
pos_label=pos_label, | |
sparse_output=sparse_output, | |
) | |
continue | |
# check label_binarize | |
binarized = label_binarize( | |
y, | |
classes=classes, | |
neg_label=neg_label, | |
pos_label=pos_label, | |
sparse_output=sparse_output, | |
) | |
assert_array_equal(toarray(binarized), expected) | |
assert issparse(binarized) == sparse_output | |
# check inverse | |
y_type = type_of_target(y) | |
if y_type == "multiclass": | |
inversed = _inverse_binarize_multiclass(binarized, classes=classes) | |
else: | |
inversed = _inverse_binarize_thresholding( | |
binarized, | |
output_type=y_type, | |
classes=classes, | |
threshold=((neg_label + pos_label) / 2.0), | |
) | |
assert_array_equal(toarray(inversed), toarray(y)) | |
# Check label binarizer | |
lb = LabelBinarizer( | |
neg_label=neg_label, pos_label=pos_label, sparse_output=sparse_output | |
) | |
binarized = lb.fit_transform(y) | |
assert_array_equal(toarray(binarized), expected) | |
assert issparse(binarized) == sparse_output | |
inverse_output = lb.inverse_transform(binarized) | |
assert_array_equal(toarray(inverse_output), toarray(y)) | |
assert issparse(inverse_output) == issparse(y) | |
def test_label_binarize_binary(): | |
y = [0, 1, 0] | |
classes = [0, 1] | |
pos_label = 2 | |
neg_label = -1 | |
expected = np.array([[2, -1], [-1, 2], [2, -1]])[:, 1].reshape((-1, 1)) | |
check_binarized_results(y, classes, pos_label, neg_label, expected) | |
# Binary case where sparse_output = True will not result in a ValueError | |
y = [0, 1, 0] | |
classes = [0, 1] | |
pos_label = 3 | |
neg_label = 0 | |
expected = np.array([[3, 0], [0, 3], [3, 0]])[:, 1].reshape((-1, 1)) | |
check_binarized_results(y, classes, pos_label, neg_label, expected) | |
def test_label_binarize_multiclass(): | |
y = [0, 1, 2] | |
classes = [0, 1, 2] | |
pos_label = 2 | |
neg_label = 0 | |
expected = 2 * np.eye(3) | |
check_binarized_results(y, classes, pos_label, neg_label, expected) | |
with pytest.raises(ValueError): | |
label_binarize( | |
y, classes=classes, neg_label=-1, pos_label=pos_label, sparse_output=True | |
) | |
def test_label_binarize_multilabel(arr_type): | |
y_ind = np.array([[0, 1, 0], [1, 1, 1], [0, 0, 0]]) | |
classes = [0, 1, 2] | |
pos_label = 2 | |
neg_label = 0 | |
expected = pos_label * y_ind | |
y = arr_type(y_ind) | |
check_binarized_results(y, classes, pos_label, neg_label, expected) | |
with pytest.raises(ValueError): | |
label_binarize( | |
y, classes=classes, neg_label=-1, pos_label=pos_label, sparse_output=True | |
) | |
def test_invalid_input_label_binarize(): | |
with pytest.raises(ValueError): | |
label_binarize([0, 2], classes=[0, 2], pos_label=0, neg_label=1) | |
with pytest.raises(ValueError, match="continuous target data is not "): | |
label_binarize([1.2, 2.7], classes=[0, 1]) | |
with pytest.raises(ValueError, match="mismatch with the labels"): | |
label_binarize([[1, 3]], classes=[1, 2, 3]) | |
def test_inverse_binarize_multiclass(csr_container): | |
got = _inverse_binarize_multiclass( | |
csr_container([[0, 1, 0], [-1, 0, -1], [0, 0, 0]]), np.arange(3) | |
) | |
assert_array_equal(got, np.array([1, 1, 0])) | |
def test_nan_label_encoder(): | |
"""Check that label encoder encodes nans in transform. | |
Non-regression test for #22628. | |
""" | |
le = LabelEncoder() | |
le.fit(["a", "a", "b", np.nan]) | |
y_trans = le.transform([np.nan]) | |
assert_array_equal(y_trans, [2]) | |
def test_label_encoders_do_not_have_set_output(encoder): | |
"""Check that label encoders do not define set_output and work with y as a kwarg. | |
Non-regression test for #26854. | |
""" | |
assert not hasattr(encoder, "set_output") | |
y_encoded_with_kwarg = encoder.fit_transform(y=["a", "b", "c"]) | |
y_encoded_positional = encoder.fit_transform(["a", "b", "c"]) | |
assert_array_equal(y_encoded_with_kwarg, y_encoded_positional) | |
def test_label_encoder_array_api_compliance(y, array_namespace, device, dtype): | |
xp = _array_api_for_tests(array_namespace, device) | |
xp_y = xp.asarray(y, device=device) | |
with config_context(array_api_dispatch=True): | |
xp_label = LabelEncoder() | |
np_label = LabelEncoder() | |
xp_label = xp_label.fit(xp_y) | |
xp_transformed = xp_label.transform(xp_y) | |
xp_inv_transformed = xp_label.inverse_transform(xp_transformed) | |
np_label = np_label.fit(y) | |
np_transformed = np_label.transform(y) | |
assert get_namespace(xp_transformed)[0].__name__ == xp.__name__ | |
assert get_namespace(xp_inv_transformed)[0].__name__ == xp.__name__ | |
assert get_namespace(xp_label.classes_)[0].__name__ == xp.__name__ | |
assert_array_equal(_convert_to_numpy(xp_transformed, xp), np_transformed) | |
assert_array_equal(_convert_to_numpy(xp_inv_transformed, xp), y) | |
assert_array_equal(_convert_to_numpy(xp_label.classes_, xp), np_label.classes_) | |
xp_label = LabelEncoder() | |
np_label = LabelEncoder() | |
xp_transformed = xp_label.fit_transform(xp_y) | |
np_transformed = np_label.fit_transform(y) | |
assert get_namespace(xp_transformed)[0].__name__ == xp.__name__ | |
assert get_namespace(xp_label.classes_)[0].__name__ == xp.__name__ | |
assert_array_equal(_convert_to_numpy(xp_transformed, xp), np_transformed) | |
assert_array_equal(_convert_to_numpy(xp_label.classes_, xp), np_label.classes_) | |