|
from unittest.mock import Mock |
|
|
|
import numpy as np |
|
import pytest |
|
from numpy.testing import assert_allclose, assert_array_almost_equal |
|
|
|
from sklearn.manifold import _mds as mds |
|
from sklearn.metrics import euclidean_distances |
|
|
|
|
|
def test_smacof(): |
|
|
|
|
|
sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) |
|
Z = np.array([[-0.266, -0.539], [0.451, 0.252], [0.016, -0.238], [-0.200, 0.524]]) |
|
X, _ = mds.smacof(sim, init=Z, n_components=2, max_iter=1, n_init=1) |
|
X_true = np.array( |
|
[[-1.415, -2.471], [1.633, 1.107], [0.249, -0.067], [-0.468, 1.431]] |
|
) |
|
assert_array_almost_equal(X, X_true, decimal=3) |
|
|
|
|
|
def test_smacof_error(): |
|
|
|
sim = np.array([[0, 5, 9, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) |
|
|
|
with pytest.raises(ValueError): |
|
mds.smacof(sim) |
|
|
|
|
|
sim = np.array([[0, 5, 9, 4], [5, 0, 2, 2], [4, 2, 1, 0]]) |
|
|
|
with pytest.raises(ValueError): |
|
mds.smacof(sim) |
|
|
|
|
|
sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) |
|
|
|
Z = np.array([[-0.266, -0.539], [0.016, -0.238], [-0.200, 0.524]]) |
|
with pytest.raises(ValueError): |
|
mds.smacof(sim, init=Z, n_init=1) |
|
|
|
|
|
def test_MDS(): |
|
sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) |
|
mds_clf = mds.MDS(metric=False, n_jobs=3, dissimilarity="precomputed") |
|
mds_clf.fit(sim) |
|
|
|
|
|
@pytest.mark.parametrize("k", [0.5, 1.5, 2]) |
|
def test_normed_stress(k): |
|
"""Test that non-metric MDS normalized stress is scale-invariant.""" |
|
sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) |
|
|
|
X1, stress1 = mds.smacof(sim, metric=False, max_iter=5, random_state=0) |
|
X2, stress2 = mds.smacof(k * sim, metric=False, max_iter=5, random_state=0) |
|
|
|
assert_allclose(stress1, stress2, rtol=1e-5) |
|
assert_allclose(X1, X2, rtol=1e-5) |
|
|
|
|
|
def test_normalize_metric_warning(): |
|
""" |
|
Test that a UserWarning is emitted when using normalized stress with |
|
metric-MDS. |
|
""" |
|
msg = "Normalized stress is not supported" |
|
sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) |
|
with pytest.raises(ValueError, match=msg): |
|
mds.smacof(sim, metric=True, normalized_stress=True) |
|
|
|
|
|
@pytest.mark.parametrize("metric", [True, False]) |
|
def test_normalized_stress_auto(metric, monkeypatch): |
|
rng = np.random.RandomState(0) |
|
X = rng.randn(4, 3) |
|
dist = euclidean_distances(X) |
|
|
|
mock = Mock(side_effect=mds._smacof_single) |
|
monkeypatch.setattr("sklearn.manifold._mds._smacof_single", mock) |
|
|
|
est = mds.MDS(metric=metric, normalized_stress="auto", random_state=rng) |
|
est.fit_transform(X) |
|
assert mock.call_args[1]["normalized_stress"] != metric |
|
|
|
mds.smacof(dist, metric=metric, normalized_stress="auto", random_state=rng) |
|
assert mock.call_args[1]["normalized_stress"] != metric |
|
|