|
""" |
|
|
|
============================================================= |
|
Online Latent Dirichlet Allocation with variational inference |
|
============================================================= |
|
|
|
This implementation is modified from Matthew D. Hoffman's onlineldavb code |
|
Link: https://github.com/blei-lab/onlineldavb |
|
""" |
|
|
|
|
|
|
|
|
|
from numbers import Integral, Real |
|
|
|
import numpy as np |
|
import scipy.sparse as sp |
|
from joblib import effective_n_jobs |
|
from scipy.special import gammaln, logsumexp |
|
|
|
from ..base import ( |
|
BaseEstimator, |
|
ClassNamePrefixFeaturesOutMixin, |
|
TransformerMixin, |
|
_fit_context, |
|
) |
|
from ..utils import check_random_state, gen_batches, gen_even_slices |
|
from ..utils._param_validation import Interval, StrOptions |
|
from ..utils.parallel import Parallel, delayed |
|
from ..utils.validation import check_is_fitted, check_non_negative, validate_data |
|
from ._online_lda_fast import ( |
|
_dirichlet_expectation_1d as cy_dirichlet_expectation_1d, |
|
) |
|
from ._online_lda_fast import ( |
|
_dirichlet_expectation_2d, |
|
) |
|
from ._online_lda_fast import ( |
|
mean_change as cy_mean_change, |
|
) |
|
|
|
EPS = np.finfo(float).eps |
|
|
|
|
|
def _update_doc_distribution( |
|
X, |
|
exp_topic_word_distr, |
|
doc_topic_prior, |
|
max_doc_update_iter, |
|
mean_change_tol, |
|
cal_sstats, |
|
random_state, |
|
): |
|
"""E-step: update document-topic distribution. |
|
|
|
Parameters |
|
---------- |
|
X : {array-like, sparse matrix} of shape (n_samples, n_features) |
|
Document word matrix. |
|
|
|
exp_topic_word_distr : ndarray of shape (n_topics, n_features) |
|
Exponential value of expectation of log topic word distribution. |
|
In the literature, this is `exp(E[log(beta)])`. |
|
|
|
doc_topic_prior : float |
|
Prior of document topic distribution `theta`. |
|
|
|
max_doc_update_iter : int |
|
Max number of iterations for updating document topic distribution in |
|
the E-step. |
|
|
|
mean_change_tol : float |
|
Stopping tolerance for updating document topic distribution in E-step. |
|
|
|
cal_sstats : bool |
|
Parameter that indicate to calculate sufficient statistics or not. |
|
Set `cal_sstats` to `True` when we need to run M-step. |
|
|
|
random_state : RandomState instance or None |
|
Parameter that indicate how to initialize document topic distribution. |
|
Set `random_state` to None will initialize document topic distribution |
|
to a constant number. |
|
|
|
Returns |
|
------- |
|
(doc_topic_distr, suff_stats) : |
|
`doc_topic_distr` is unnormalized topic distribution for each document. |
|
In the literature, this is `gamma`. we can calculate `E[log(theta)]` |
|
from it. |
|
`suff_stats` is expected sufficient statistics for the M-step. |
|
When `cal_sstats == False`, this will be None. |
|
|
|
""" |
|
is_sparse_x = sp.issparse(X) |
|
n_samples, n_features = X.shape |
|
n_topics = exp_topic_word_distr.shape[0] |
|
|
|
if random_state: |
|
doc_topic_distr = random_state.gamma(100.0, 0.01, (n_samples, n_topics)).astype( |
|
X.dtype, copy=False |
|
) |
|
else: |
|
doc_topic_distr = np.ones((n_samples, n_topics), dtype=X.dtype) |
|
|
|
|
|
exp_doc_topic = np.exp(_dirichlet_expectation_2d(doc_topic_distr)) |
|
|
|
|
|
suff_stats = ( |
|
np.zeros(exp_topic_word_distr.shape, dtype=X.dtype) if cal_sstats else None |
|
) |
|
|
|
if is_sparse_x: |
|
X_data = X.data |
|
X_indices = X.indices |
|
X_indptr = X.indptr |
|
|
|
|
|
|
|
|
|
|
|
ctype = "float" if X.dtype == np.float32 else "double" |
|
mean_change = cy_mean_change[ctype] |
|
dirichlet_expectation_1d = cy_dirichlet_expectation_1d[ctype] |
|
eps = np.finfo(X.dtype).eps |
|
|
|
for idx_d in range(n_samples): |
|
if is_sparse_x: |
|
ids = X_indices[X_indptr[idx_d] : X_indptr[idx_d + 1]] |
|
cnts = X_data[X_indptr[idx_d] : X_indptr[idx_d + 1]] |
|
else: |
|
ids = np.nonzero(X[idx_d, :])[0] |
|
cnts = X[idx_d, ids] |
|
|
|
doc_topic_d = doc_topic_distr[idx_d, :] |
|
|
|
exp_doc_topic_d = exp_doc_topic[idx_d, :].copy() |
|
exp_topic_word_d = exp_topic_word_distr[:, ids] |
|
|
|
|
|
for _ in range(0, max_doc_update_iter): |
|
last_d = doc_topic_d |
|
|
|
|
|
|
|
norm_phi = np.dot(exp_doc_topic_d, exp_topic_word_d) + eps |
|
|
|
doc_topic_d = exp_doc_topic_d * np.dot(cnts / norm_phi, exp_topic_word_d.T) |
|
|
|
dirichlet_expectation_1d(doc_topic_d, doc_topic_prior, exp_doc_topic_d) |
|
|
|
if mean_change(last_d, doc_topic_d) < mean_change_tol: |
|
break |
|
doc_topic_distr[idx_d, :] = doc_topic_d |
|
|
|
|
|
|
|
if cal_sstats: |
|
norm_phi = np.dot(exp_doc_topic_d, exp_topic_word_d) + eps |
|
suff_stats[:, ids] += np.outer(exp_doc_topic_d, cnts / norm_phi) |
|
|
|
return (doc_topic_distr, suff_stats) |
|
|
|
|
|
class LatentDirichletAllocation( |
|
ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator |
|
): |
|
"""Latent Dirichlet Allocation with online variational Bayes algorithm. |
|
|
|
The implementation is based on [1]_ and [2]_. |
|
|
|
.. versionadded:: 0.17 |
|
|
|
Read more in the :ref:`User Guide <LatentDirichletAllocation>`. |
|
|
|
Parameters |
|
---------- |
|
n_components : int, default=10 |
|
Number of topics. |
|
|
|
.. versionchanged:: 0.19 |
|
``n_topics`` was renamed to ``n_components`` |
|
|
|
doc_topic_prior : float, default=None |
|
Prior of document topic distribution `theta`. If the value is None, |
|
defaults to `1 / n_components`. |
|
In [1]_, this is called `alpha`. |
|
|
|
topic_word_prior : float, default=None |
|
Prior of topic word distribution `beta`. If the value is None, defaults |
|
to `1 / n_components`. |
|
In [1]_, this is called `eta`. |
|
|
|
learning_method : {'batch', 'online'}, default='batch' |
|
Method used to update `_component`. Only used in :meth:`fit` method. |
|
In general, if the data size is large, the online update will be much |
|
faster than the batch update. |
|
|
|
Valid options: |
|
|
|
- 'batch': Batch variational Bayes method. Use all training data in each EM |
|
update. Old `components_` will be overwritten in each iteration. |
|
- 'online': Online variational Bayes method. In each EM update, use mini-batch |
|
of training data to update the ``components_`` variable incrementally. The |
|
learning rate is controlled by the ``learning_decay`` and the |
|
``learning_offset`` parameters. |
|
|
|
.. versionchanged:: 0.20 |
|
The default learning method is now ``"batch"``. |
|
|
|
learning_decay : float, default=0.7 |
|
It is a parameter that control learning rate in the online learning |
|
method. The value should be set between (0.5, 1.0] to guarantee |
|
asymptotic convergence. When the value is 0.0 and batch_size is |
|
``n_samples``, the update method is same as batch learning. In the |
|
literature, this is called kappa. |
|
|
|
learning_offset : float, default=10.0 |
|
A (positive) parameter that downweights early iterations in online |
|
learning. It should be greater than 1.0. In the literature, this is |
|
called tau_0. |
|
|
|
max_iter : int, default=10 |
|
The maximum number of passes over the training data (aka epochs). |
|
It only impacts the behavior in the :meth:`fit` method, and not the |
|
:meth:`partial_fit` method. |
|
|
|
batch_size : int, default=128 |
|
Number of documents to use in each EM iteration. Only used in online |
|
learning. |
|
|
|
evaluate_every : int, default=-1 |
|
How often to evaluate perplexity. Only used in `fit` method. |
|
set it to 0 or negative number to not evaluate perplexity in |
|
training at all. Evaluating perplexity can help you check convergence |
|
in training process, but it will also increase total training time. |
|
Evaluating perplexity in every iteration might increase training time |
|
up to two-fold. |
|
|
|
total_samples : int, default=1e6 |
|
Total number of documents. Only used in the :meth:`partial_fit` method. |
|
|
|
perp_tol : float, default=1e-1 |
|
Perplexity tolerance. Only used when ``evaluate_every`` is greater than 0. |
|
|
|
mean_change_tol : float, default=1e-3 |
|
Stopping tolerance for updating document topic distribution in E-step. |
|
|
|
max_doc_update_iter : int, default=100 |
|
Max number of iterations for updating document topic distribution in |
|
the E-step. |
|
|
|
n_jobs : int, default=None |
|
The number of jobs to use in the E-step. |
|
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. |
|
``-1`` means using all processors. See :term:`Glossary <n_jobs>` |
|
for more details. |
|
|
|
verbose : int, default=0 |
|
Verbosity level. |
|
|
|
random_state : int, RandomState instance or None, default=None |
|
Pass an int for reproducible results across multiple function calls. |
|
See :term:`Glossary <random_state>`. |
|
|
|
Attributes |
|
---------- |
|
components_ : ndarray of shape (n_components, n_features) |
|
Variational parameters for topic word distribution. Since the complete |
|
conditional for topic word distribution is a Dirichlet, |
|
``components_[i, j]`` can be viewed as pseudocount that represents the |
|
number of times word `j` was assigned to topic `i`. |
|
It can also be viewed as distribution over the words for each topic |
|
after normalization: |
|
``model.components_ / model.components_.sum(axis=1)[:, np.newaxis]``. |
|
|
|
exp_dirichlet_component_ : ndarray of shape (n_components, n_features) |
|
Exponential value of expectation of log topic word distribution. |
|
In the literature, this is `exp(E[log(beta)])`. |
|
|
|
n_batch_iter_ : int |
|
Number of iterations of the EM step. |
|
|
|
n_features_in_ : int |
|
Number of features seen during :term:`fit`. |
|
|
|
.. versionadded:: 0.24 |
|
|
|
feature_names_in_ : ndarray of shape (`n_features_in_`,) |
|
Names of features seen during :term:`fit`. Defined only when `X` |
|
has feature names that are all strings. |
|
|
|
.. versionadded:: 1.0 |
|
|
|
n_iter_ : int |
|
Number of passes over the dataset. |
|
|
|
bound_ : float |
|
Final perplexity score on training set. |
|
|
|
doc_topic_prior_ : float |
|
Prior of document topic distribution `theta`. If the value is None, |
|
it is `1 / n_components`. |
|
|
|
random_state_ : RandomState instance |
|
RandomState instance that is generated either from a seed, the random |
|
number generator or by `np.random`. |
|
|
|
topic_word_prior_ : float |
|
Prior of topic word distribution `beta`. If the value is None, it is |
|
`1 / n_components`. |
|
|
|
See Also |
|
-------- |
|
sklearn.discriminant_analysis.LinearDiscriminantAnalysis: |
|
A classifier with a linear decision boundary, generated by fitting |
|
class conditional densities to the data and using Bayes' rule. |
|
|
|
References |
|
---------- |
|
.. [1] "Online Learning for Latent Dirichlet Allocation", Matthew D. |
|
Hoffman, David M. Blei, Francis Bach, 2010 |
|
https://github.com/blei-lab/onlineldavb |
|
|
|
.. [2] "Stochastic Variational Inference", Matthew D. Hoffman, |
|
David M. Blei, Chong Wang, John Paisley, 2013 |
|
|
|
Examples |
|
-------- |
|
>>> from sklearn.decomposition import LatentDirichletAllocation |
|
>>> from sklearn.datasets import make_multilabel_classification |
|
>>> # This produces a feature matrix of token counts, similar to what |
|
>>> # CountVectorizer would produce on text. |
|
>>> X, _ = make_multilabel_classification(random_state=0) |
|
>>> lda = LatentDirichletAllocation(n_components=5, |
|
... random_state=0) |
|
>>> lda.fit(X) |
|
LatentDirichletAllocation(...) |
|
>>> # get topics for some given samples: |
|
>>> lda.transform(X[-2:]) |
|
array([[0.00360392, 0.25499205, 0.0036211 , 0.64236448, 0.09541846], |
|
[0.15297572, 0.00362644, 0.44412786, 0.39568399, 0.003586 ]]) |
|
""" |
|
|
|
_parameter_constraints: dict = { |
|
"n_components": [Interval(Integral, 0, None, closed="neither")], |
|
"doc_topic_prior": [None, Interval(Real, 0, 1, closed="both")], |
|
"topic_word_prior": [None, Interval(Real, 0, 1, closed="both")], |
|
"learning_method": [StrOptions({"batch", "online"})], |
|
"learning_decay": [Interval(Real, 0, 1, closed="both")], |
|
"learning_offset": [Interval(Real, 1.0, None, closed="left")], |
|
"max_iter": [Interval(Integral, 0, None, closed="left")], |
|
"batch_size": [Interval(Integral, 0, None, closed="neither")], |
|
"evaluate_every": [Interval(Integral, None, None, closed="neither")], |
|
"total_samples": [Interval(Real, 0, None, closed="neither")], |
|
"perp_tol": [Interval(Real, 0, None, closed="left")], |
|
"mean_change_tol": [Interval(Real, 0, None, closed="left")], |
|
"max_doc_update_iter": [Interval(Integral, 0, None, closed="left")], |
|
"n_jobs": [None, Integral], |
|
"verbose": ["verbose"], |
|
"random_state": ["random_state"], |
|
} |
|
|
|
def __init__( |
|
self, |
|
n_components=10, |
|
*, |
|
doc_topic_prior=None, |
|
topic_word_prior=None, |
|
learning_method="batch", |
|
learning_decay=0.7, |
|
learning_offset=10.0, |
|
max_iter=10, |
|
batch_size=128, |
|
evaluate_every=-1, |
|
total_samples=1e6, |
|
perp_tol=1e-1, |
|
mean_change_tol=1e-3, |
|
max_doc_update_iter=100, |
|
n_jobs=None, |
|
verbose=0, |
|
random_state=None, |
|
): |
|
self.n_components = n_components |
|
self.doc_topic_prior = doc_topic_prior |
|
self.topic_word_prior = topic_word_prior |
|
self.learning_method = learning_method |
|
self.learning_decay = learning_decay |
|
self.learning_offset = learning_offset |
|
self.max_iter = max_iter |
|
self.batch_size = batch_size |
|
self.evaluate_every = evaluate_every |
|
self.total_samples = total_samples |
|
self.perp_tol = perp_tol |
|
self.mean_change_tol = mean_change_tol |
|
self.max_doc_update_iter = max_doc_update_iter |
|
self.n_jobs = n_jobs |
|
self.verbose = verbose |
|
self.random_state = random_state |
|
|
|
def _init_latent_vars(self, n_features, dtype=np.float64): |
|
"""Initialize latent variables.""" |
|
|
|
self.random_state_ = check_random_state(self.random_state) |
|
self.n_batch_iter_ = 1 |
|
self.n_iter_ = 0 |
|
|
|
if self.doc_topic_prior is None: |
|
self.doc_topic_prior_ = 1.0 / self.n_components |
|
else: |
|
self.doc_topic_prior_ = self.doc_topic_prior |
|
|
|
if self.topic_word_prior is None: |
|
self.topic_word_prior_ = 1.0 / self.n_components |
|
else: |
|
self.topic_word_prior_ = self.topic_word_prior |
|
|
|
init_gamma = 100.0 |
|
init_var = 1.0 / init_gamma |
|
|
|
self.components_ = self.random_state_.gamma( |
|
init_gamma, init_var, (self.n_components, n_features) |
|
).astype(dtype, copy=False) |
|
|
|
|
|
self.exp_dirichlet_component_ = np.exp( |
|
_dirichlet_expectation_2d(self.components_) |
|
) |
|
|
|
def _e_step(self, X, cal_sstats, random_init, parallel=None): |
|
"""E-step in EM update. |
|
|
|
Parameters |
|
---------- |
|
X : {array-like, sparse matrix} of shape (n_samples, n_features) |
|
Document word matrix. |
|
|
|
cal_sstats : bool |
|
Parameter that indicate whether to calculate sufficient statistics |
|
or not. Set ``cal_sstats`` to True when we need to run M-step. |
|
|
|
random_init : bool |
|
Parameter that indicate whether to initialize document topic |
|
distribution randomly in the E-step. Set it to True in training |
|
steps. |
|
|
|
parallel : joblib.Parallel, default=None |
|
Pre-initialized instance of joblib.Parallel. |
|
|
|
Returns |
|
------- |
|
(doc_topic_distr, suff_stats) : |
|
`doc_topic_distr` is unnormalized topic distribution for each |
|
document. In the literature, this is called `gamma`. |
|
`suff_stats` is expected sufficient statistics for the M-step. |
|
When `cal_sstats == False`, it will be None. |
|
|
|
""" |
|
|
|
|
|
random_state = self.random_state_ if random_init else None |
|
|
|
|
|
n_jobs = effective_n_jobs(self.n_jobs) |
|
if parallel is None: |
|
parallel = Parallel(n_jobs=n_jobs, verbose=max(0, self.verbose - 1)) |
|
results = parallel( |
|
delayed(_update_doc_distribution)( |
|
X[idx_slice, :], |
|
self.exp_dirichlet_component_, |
|
self.doc_topic_prior_, |
|
self.max_doc_update_iter, |
|
self.mean_change_tol, |
|
cal_sstats, |
|
random_state, |
|
) |
|
for idx_slice in gen_even_slices(X.shape[0], n_jobs) |
|
) |
|
|
|
|
|
doc_topics, sstats_list = zip(*results) |
|
doc_topic_distr = np.vstack(doc_topics) |
|
|
|
if cal_sstats: |
|
|
|
|
|
suff_stats = np.zeros(self.components_.shape, dtype=self.components_.dtype) |
|
for sstats in sstats_list: |
|
suff_stats += sstats |
|
suff_stats *= self.exp_dirichlet_component_ |
|
else: |
|
suff_stats = None |
|
|
|
return (doc_topic_distr, suff_stats) |
|
|
|
def _em_step(self, X, total_samples, batch_update, parallel=None): |
|
"""EM update for 1 iteration. |
|
|
|
update `_component` by batch VB or online VB. |
|
|
|
Parameters |
|
---------- |
|
X : {array-like, sparse matrix} of shape (n_samples, n_features) |
|
Document word matrix. |
|
|
|
total_samples : int |
|
Total number of documents. It is only used when |
|
batch_update is `False`. |
|
|
|
batch_update : bool |
|
Parameter that controls updating method. |
|
`True` for batch learning, `False` for online learning. |
|
|
|
parallel : joblib.Parallel, default=None |
|
Pre-initialized instance of joblib.Parallel |
|
|
|
Returns |
|
------- |
|
doc_topic_distr : ndarray of shape (n_samples, n_components) |
|
Unnormalized document topic distribution. |
|
""" |
|
|
|
|
|
_, suff_stats = self._e_step( |
|
X, cal_sstats=True, random_init=True, parallel=parallel |
|
) |
|
|
|
|
|
if batch_update: |
|
self.components_ = self.topic_word_prior_ + suff_stats |
|
else: |
|
|
|
|
|
weight = np.power( |
|
self.learning_offset + self.n_batch_iter_, -self.learning_decay |
|
) |
|
doc_ratio = float(total_samples) / X.shape[0] |
|
self.components_ *= 1 - weight |
|
self.components_ += weight * ( |
|
self.topic_word_prior_ + doc_ratio * suff_stats |
|
) |
|
|
|
|
|
self.exp_dirichlet_component_ = np.exp( |
|
_dirichlet_expectation_2d(self.components_) |
|
) |
|
self.n_batch_iter_ += 1 |
|
return |
|
|
|
def __sklearn_tags__(self): |
|
tags = super().__sklearn_tags__() |
|
tags.input_tags.positive_only = True |
|
tags.input_tags.sparse = True |
|
tags.transformer_tags.preserves_dtype = ["float32", "float64"] |
|
return tags |
|
|
|
def _check_non_neg_array(self, X, reset_n_features, whom): |
|
"""check X format |
|
|
|
check X format and make sure no negative value in X. |
|
|
|
Parameters |
|
---------- |
|
X : array-like or sparse matrix |
|
|
|
""" |
|
dtype = [np.float64, np.float32] if reset_n_features else self.components_.dtype |
|
|
|
X = validate_data( |
|
self, |
|
X, |
|
reset=reset_n_features, |
|
accept_sparse="csr", |
|
dtype=dtype, |
|
) |
|
check_non_negative(X, whom) |
|
|
|
return X |
|
|
|
@_fit_context(prefer_skip_nested_validation=True) |
|
def partial_fit(self, X, y=None): |
|
"""Online VB with Mini-Batch update. |
|
|
|
Parameters |
|
---------- |
|
X : {array-like, sparse matrix} of shape (n_samples, n_features) |
|
Document word matrix. |
|
|
|
y : Ignored |
|
Not used, present here for API consistency by convention. |
|
|
|
Returns |
|
------- |
|
self |
|
Partially fitted estimator. |
|
""" |
|
first_time = not hasattr(self, "components_") |
|
|
|
X = self._check_non_neg_array( |
|
X, reset_n_features=first_time, whom="LatentDirichletAllocation.partial_fit" |
|
) |
|
n_samples, n_features = X.shape |
|
batch_size = self.batch_size |
|
|
|
|
|
if first_time: |
|
self._init_latent_vars(n_features, dtype=X.dtype) |
|
|
|
if n_features != self.components_.shape[1]: |
|
raise ValueError( |
|
"The provided data has %d dimensions while " |
|
"the model was trained with feature size %d." |
|
% (n_features, self.components_.shape[1]) |
|
) |
|
|
|
n_jobs = effective_n_jobs(self.n_jobs) |
|
with Parallel(n_jobs=n_jobs, verbose=max(0, self.verbose - 1)) as parallel: |
|
for idx_slice in gen_batches(n_samples, batch_size): |
|
self._em_step( |
|
X[idx_slice, :], |
|
total_samples=self.total_samples, |
|
batch_update=False, |
|
parallel=parallel, |
|
) |
|
|
|
return self |
|
|
|
@_fit_context(prefer_skip_nested_validation=True) |
|
def fit(self, X, y=None): |
|
"""Learn model for the data X with variational Bayes method. |
|
|
|
When `learning_method` is 'online', use mini-batch update. |
|
Otherwise, use batch update. |
|
|
|
Parameters |
|
---------- |
|
X : {array-like, sparse matrix} of shape (n_samples, n_features) |
|
Document word matrix. |
|
|
|
y : Ignored |
|
Not used, present here for API consistency by convention. |
|
|
|
Returns |
|
------- |
|
self |
|
Fitted estimator. |
|
""" |
|
X = self._check_non_neg_array( |
|
X, reset_n_features=True, whom="LatentDirichletAllocation.fit" |
|
) |
|
n_samples, n_features = X.shape |
|
max_iter = self.max_iter |
|
evaluate_every = self.evaluate_every |
|
learning_method = self.learning_method |
|
|
|
batch_size = self.batch_size |
|
|
|
|
|
self._init_latent_vars(n_features, dtype=X.dtype) |
|
|
|
last_bound = None |
|
n_jobs = effective_n_jobs(self.n_jobs) |
|
with Parallel(n_jobs=n_jobs, verbose=max(0, self.verbose - 1)) as parallel: |
|
for i in range(max_iter): |
|
if learning_method == "online": |
|
for idx_slice in gen_batches(n_samples, batch_size): |
|
self._em_step( |
|
X[idx_slice, :], |
|
total_samples=n_samples, |
|
batch_update=False, |
|
parallel=parallel, |
|
) |
|
else: |
|
|
|
self._em_step( |
|
X, total_samples=n_samples, batch_update=True, parallel=parallel |
|
) |
|
|
|
|
|
if evaluate_every > 0 and (i + 1) % evaluate_every == 0: |
|
doc_topics_distr, _ = self._e_step( |
|
X, cal_sstats=False, random_init=False, parallel=parallel |
|
) |
|
bound = self._perplexity_precomp_distr( |
|
X, doc_topics_distr, sub_sampling=False |
|
) |
|
if self.verbose: |
|
print( |
|
"iteration: %d of max_iter: %d, perplexity: %.4f" |
|
% (i + 1, max_iter, bound) |
|
) |
|
|
|
if last_bound and abs(last_bound - bound) < self.perp_tol: |
|
break |
|
last_bound = bound |
|
|
|
elif self.verbose: |
|
print("iteration: %d of max_iter: %d" % (i + 1, max_iter)) |
|
self.n_iter_ += 1 |
|
|
|
|
|
doc_topics_distr, _ = self._e_step( |
|
X, cal_sstats=False, random_init=False, parallel=parallel |
|
) |
|
self.bound_ = self._perplexity_precomp_distr( |
|
X, doc_topics_distr, sub_sampling=False |
|
) |
|
|
|
return self |
|
|
|
def _unnormalized_transform(self, X): |
|
"""Transform data X according to fitted model. |
|
|
|
Parameters |
|
---------- |
|
X : {array-like, sparse matrix} of shape (n_samples, n_features) |
|
Document word matrix. |
|
|
|
Returns |
|
------- |
|
doc_topic_distr : ndarray of shape (n_samples, n_components) |
|
Document topic distribution for X. |
|
""" |
|
doc_topic_distr, _ = self._e_step(X, cal_sstats=False, random_init=False) |
|
|
|
return doc_topic_distr |
|
|
|
def transform(self, X, *, normalize=True): |
|
"""Transform data X according to the fitted model. |
|
|
|
.. versionchanged:: 0.18 |
|
`doc_topic_distr` is now normalized. |
|
|
|
Parameters |
|
---------- |
|
X : {array-like, sparse matrix} of shape (n_samples, n_features) |
|
Document word matrix. |
|
|
|
normalize : bool, default=True |
|
Whether to normalize the document topic distribution. |
|
|
|
Returns |
|
------- |
|
doc_topic_distr : ndarray of shape (n_samples, n_components) |
|
Document topic distribution for X. |
|
""" |
|
check_is_fitted(self) |
|
X = self._check_non_neg_array( |
|
X, reset_n_features=False, whom="LatentDirichletAllocation.transform" |
|
) |
|
doc_topic_distr = self._unnormalized_transform(X) |
|
if normalize: |
|
doc_topic_distr /= doc_topic_distr.sum(axis=1)[:, np.newaxis] |
|
return doc_topic_distr |
|
|
|
def fit_transform(self, X, y=None, *, normalize=True): |
|
""" |
|
Fit to data, then transform it. |
|
|
|
Fits transformer to `X` and `y` and returns a transformed version of `X`. |
|
|
|
Parameters |
|
---------- |
|
X : array-like of shape (n_samples, n_features) |
|
Input samples. |
|
|
|
y : array-like of shape (n_samples,) or (n_samples, n_outputs), \ |
|
default=None |
|
Target values (None for unsupervised transformations). |
|
|
|
normalize : bool, default=True |
|
Whether to normalize the document topic distribution in `transform`. |
|
|
|
Returns |
|
------- |
|
X_new : ndarray array of shape (n_samples, n_features_new) |
|
Transformed array. |
|
""" |
|
return self.fit(X, y).transform(X, normalize=normalize) |
|
|
|
def _approx_bound(self, X, doc_topic_distr, sub_sampling): |
|
"""Estimate the variational bound. |
|
|
|
Estimate the variational bound over "all documents" using only the |
|
documents passed in as X. Since log-likelihood of each word cannot |
|
be computed directly, we use this bound to estimate it. |
|
|
|
Parameters |
|
---------- |
|
X : {array-like, sparse matrix} of shape (n_samples, n_features) |
|
Document word matrix. |
|
|
|
doc_topic_distr : ndarray of shape (n_samples, n_components) |
|
Document topic distribution. In the literature, this is called |
|
gamma. |
|
|
|
sub_sampling : bool, default=False |
|
Compensate for subsampling of documents. |
|
It is used in calculate bound in online learning. |
|
|
|
Returns |
|
------- |
|
score : float |
|
|
|
""" |
|
|
|
def _loglikelihood(prior, distr, dirichlet_distr, size): |
|
|
|
score = np.sum((prior - distr) * dirichlet_distr) |
|
score += np.sum(gammaln(distr) - gammaln(prior)) |
|
score += np.sum(gammaln(prior * size) - gammaln(np.sum(distr, 1))) |
|
return score |
|
|
|
is_sparse_x = sp.issparse(X) |
|
n_samples, n_components = doc_topic_distr.shape |
|
n_features = self.components_.shape[1] |
|
score = 0 |
|
|
|
dirichlet_doc_topic = _dirichlet_expectation_2d(doc_topic_distr) |
|
dirichlet_component_ = _dirichlet_expectation_2d(self.components_) |
|
doc_topic_prior = self.doc_topic_prior_ |
|
topic_word_prior = self.topic_word_prior_ |
|
|
|
if is_sparse_x: |
|
X_data = X.data |
|
X_indices = X.indices |
|
X_indptr = X.indptr |
|
|
|
|
|
for idx_d in range(0, n_samples): |
|
if is_sparse_x: |
|
ids = X_indices[X_indptr[idx_d] : X_indptr[idx_d + 1]] |
|
cnts = X_data[X_indptr[idx_d] : X_indptr[idx_d + 1]] |
|
else: |
|
ids = np.nonzero(X[idx_d, :])[0] |
|
cnts = X[idx_d, ids] |
|
temp = ( |
|
dirichlet_doc_topic[idx_d, :, np.newaxis] + dirichlet_component_[:, ids] |
|
) |
|
norm_phi = logsumexp(temp, axis=0) |
|
score += np.dot(cnts, norm_phi) |
|
|
|
|
|
score += _loglikelihood( |
|
doc_topic_prior, doc_topic_distr, dirichlet_doc_topic, self.n_components |
|
) |
|
|
|
|
|
if sub_sampling: |
|
doc_ratio = float(self.total_samples) / n_samples |
|
score *= doc_ratio |
|
|
|
|
|
score += _loglikelihood( |
|
topic_word_prior, self.components_, dirichlet_component_, n_features |
|
) |
|
|
|
return score |
|
|
|
def score(self, X, y=None): |
|
"""Calculate approximate log-likelihood as score. |
|
|
|
Parameters |
|
---------- |
|
X : {array-like, sparse matrix} of shape (n_samples, n_features) |
|
Document word matrix. |
|
|
|
y : Ignored |
|
Not used, present here for API consistency by convention. |
|
|
|
Returns |
|
------- |
|
score : float |
|
Use approximate bound as score. |
|
""" |
|
check_is_fitted(self) |
|
X = self._check_non_neg_array( |
|
X, reset_n_features=False, whom="LatentDirichletAllocation.score" |
|
) |
|
|
|
doc_topic_distr = self._unnormalized_transform(X) |
|
score = self._approx_bound(X, doc_topic_distr, sub_sampling=False) |
|
return score |
|
|
|
def _perplexity_precomp_distr(self, X, doc_topic_distr=None, sub_sampling=False): |
|
"""Calculate approximate perplexity for data X with ability to accept |
|
precomputed doc_topic_distr |
|
|
|
Perplexity is defined as exp(-1. * log-likelihood per word) |
|
|
|
Parameters |
|
---------- |
|
X : {array-like, sparse matrix} of shape (n_samples, n_features) |
|
Document word matrix. |
|
|
|
doc_topic_distr : ndarray of shape (n_samples, n_components), \ |
|
default=None |
|
Document topic distribution. |
|
If it is None, it will be generated by applying transform on X. |
|
|
|
Returns |
|
------- |
|
score : float |
|
Perplexity score. |
|
""" |
|
if doc_topic_distr is None: |
|
doc_topic_distr = self._unnormalized_transform(X) |
|
else: |
|
n_samples, n_components = doc_topic_distr.shape |
|
if n_samples != X.shape[0]: |
|
raise ValueError( |
|
"Number of samples in X and doc_topic_distr do not match." |
|
) |
|
|
|
if n_components != self.n_components: |
|
raise ValueError("Number of topics does not match.") |
|
|
|
current_samples = X.shape[0] |
|
bound = self._approx_bound(X, doc_topic_distr, sub_sampling) |
|
|
|
if sub_sampling: |
|
word_cnt = X.sum() * (float(self.total_samples) / current_samples) |
|
else: |
|
word_cnt = X.sum() |
|
perword_bound = bound / word_cnt |
|
|
|
return np.exp(-1.0 * perword_bound) |
|
|
|
def perplexity(self, X, sub_sampling=False): |
|
"""Calculate approximate perplexity for data X. |
|
|
|
Perplexity is defined as exp(-1. * log-likelihood per word) |
|
|
|
.. versionchanged:: 0.19 |
|
*doc_topic_distr* argument has been deprecated and is ignored |
|
because user no longer has access to unnormalized distribution |
|
|
|
Parameters |
|
---------- |
|
X : {array-like, sparse matrix} of shape (n_samples, n_features) |
|
Document word matrix. |
|
|
|
sub_sampling : bool |
|
Do sub-sampling or not. |
|
|
|
Returns |
|
------- |
|
score : float |
|
Perplexity score. |
|
""" |
|
check_is_fitted(self) |
|
X = self._check_non_neg_array( |
|
X, reset_n_features=True, whom="LatentDirichletAllocation.perplexity" |
|
) |
|
return self._perplexity_precomp_distr(X, sub_sampling=sub_sampling) |
|
|
|
@property |
|
def _n_features_out(self): |
|
"""Number of transformed output features.""" |
|
return self.components_.shape[0] |
|
|