|
"""KDDCUP 99 dataset. |
|
|
|
A classic dataset for anomaly detection. |
|
|
|
The dataset page is available from UCI Machine Learning Repository |
|
|
|
https://archive.ics.uci.edu/ml/machine-learning-databases/kddcup99-mld/kddcup.data.gz |
|
|
|
""" |
|
|
|
|
|
|
|
|
|
import errno |
|
import logging |
|
import os |
|
from gzip import GzipFile |
|
from numbers import Integral, Real |
|
from os.path import exists, join |
|
|
|
import joblib |
|
import numpy as np |
|
|
|
from ..utils import Bunch, check_random_state |
|
from ..utils import shuffle as shuffle_method |
|
from ..utils._param_validation import Interval, StrOptions, validate_params |
|
from . import get_data_home |
|
from ._base import ( |
|
RemoteFileMetadata, |
|
_convert_data_dataframe, |
|
_fetch_remote, |
|
load_descr, |
|
) |
|
|
|
|
|
|
|
ARCHIVE = RemoteFileMetadata( |
|
filename="kddcup99_data", |
|
url="https://ndownloader.figshare.com/files/5976045", |
|
checksum="3b6c942aa0356c0ca35b7b595a26c89d343652c9db428893e7494f837b274292", |
|
) |
|
|
|
|
|
|
|
ARCHIVE_10_PERCENT = RemoteFileMetadata( |
|
filename="kddcup99_10_data", |
|
url="https://ndownloader.figshare.com/files/5976042", |
|
checksum="8045aca0d84e70e622d1148d7df782496f6333bf6eb979a1b0837c42a9fd9561", |
|
) |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
@validate_params( |
|
{ |
|
"subset": [StrOptions({"SA", "SF", "http", "smtp"}), None], |
|
"data_home": [str, os.PathLike, None], |
|
"shuffle": ["boolean"], |
|
"random_state": ["random_state"], |
|
"percent10": ["boolean"], |
|
"download_if_missing": ["boolean"], |
|
"return_X_y": ["boolean"], |
|
"as_frame": ["boolean"], |
|
"n_retries": [Interval(Integral, 1, None, closed="left")], |
|
"delay": [Interval(Real, 0.0, None, closed="neither")], |
|
}, |
|
prefer_skip_nested_validation=True, |
|
) |
|
def fetch_kddcup99( |
|
*, |
|
subset=None, |
|
data_home=None, |
|
shuffle=False, |
|
random_state=None, |
|
percent10=True, |
|
download_if_missing=True, |
|
return_X_y=False, |
|
as_frame=False, |
|
n_retries=3, |
|
delay=1.0, |
|
): |
|
"""Load the kddcup99 dataset (classification). |
|
|
|
Download it if necessary. |
|
|
|
================= ==================================== |
|
Classes 23 |
|
Samples total 4898431 |
|
Dimensionality 41 |
|
Features discrete (int) or continuous (float) |
|
================= ==================================== |
|
|
|
Read more in the :ref:`User Guide <kddcup99_dataset>`. |
|
|
|
.. versionadded:: 0.18 |
|
|
|
Parameters |
|
---------- |
|
subset : {'SA', 'SF', 'http', 'smtp'}, default=None |
|
To return the corresponding classical subsets of kddcup 99. |
|
If None, return the entire kddcup 99 dataset. |
|
|
|
data_home : str or path-like, default=None |
|
Specify another download and cache folder for the datasets. By default |
|
all scikit-learn data is stored in '~/scikit_learn_data' subfolders. |
|
|
|
.. versionadded:: 0.19 |
|
|
|
shuffle : bool, default=False |
|
Whether to shuffle dataset. |
|
|
|
random_state : int, RandomState instance or None, default=None |
|
Determines random number generation for dataset shuffling and for |
|
selection of abnormal samples if `subset='SA'`. Pass an int for |
|
reproducible output across multiple function calls. |
|
See :term:`Glossary <random_state>`. |
|
|
|
percent10 : bool, default=True |
|
Whether to load only 10 percent of the data. |
|
|
|
download_if_missing : bool, default=True |
|
If False, raise an OSError if the data is not locally available |
|
instead of trying to download the data from the source site. |
|
|
|
return_X_y : bool, default=False |
|
If True, returns ``(data, target)`` instead of a Bunch object. See |
|
below for more information about the `data` and `target` object. |
|
|
|
.. versionadded:: 0.20 |
|
|
|
as_frame : bool, default=False |
|
If `True`, returns a pandas Dataframe for the ``data`` and ``target`` |
|
objects in the `Bunch` returned object; `Bunch` return object will also |
|
have a ``frame`` member. |
|
|
|
.. versionadded:: 0.24 |
|
|
|
n_retries : int, default=3 |
|
Number of retries when HTTP errors are encountered. |
|
|
|
.. versionadded:: 1.5 |
|
|
|
delay : float, default=1.0 |
|
Number of seconds between retries. |
|
|
|
.. versionadded:: 1.5 |
|
|
|
Returns |
|
------- |
|
data : :class:`~sklearn.utils.Bunch` |
|
Dictionary-like object, with the following attributes. |
|
|
|
data : {ndarray, dataframe} of shape (494021, 41) |
|
The data matrix to learn. If `as_frame=True`, `data` will be a |
|
pandas DataFrame. |
|
target : {ndarray, series} of shape (494021,) |
|
The regression target for each sample. If `as_frame=True`, `target` |
|
will be a pandas Series. |
|
frame : dataframe of shape (494021, 42) |
|
Only present when `as_frame=True`. Contains `data` and `target`. |
|
DESCR : str |
|
The full description of the dataset. |
|
feature_names : list |
|
The names of the dataset columns |
|
target_names: list |
|
The names of the target columns |
|
|
|
(data, target) : tuple if ``return_X_y`` is True |
|
A tuple of two ndarray. The first containing a 2D array of |
|
shape (n_samples, n_features) with each row representing one |
|
sample and each column representing the features. The second |
|
ndarray of shape (n_samples,) containing the target samples. |
|
|
|
.. versionadded:: 0.20 |
|
""" |
|
data_home = get_data_home(data_home=data_home) |
|
kddcup99 = _fetch_brute_kddcup99( |
|
data_home=data_home, |
|
percent10=percent10, |
|
download_if_missing=download_if_missing, |
|
n_retries=n_retries, |
|
delay=delay, |
|
) |
|
|
|
data = kddcup99.data |
|
target = kddcup99.target |
|
feature_names = kddcup99.feature_names |
|
target_names = kddcup99.target_names |
|
|
|
if subset == "SA": |
|
s = target == b"normal." |
|
t = np.logical_not(s) |
|
normal_samples = data[s, :] |
|
normal_targets = target[s] |
|
abnormal_samples = data[t, :] |
|
abnormal_targets = target[t] |
|
|
|
n_samples_abnormal = abnormal_samples.shape[0] |
|
|
|
random_state = check_random_state(random_state) |
|
r = random_state.randint(0, n_samples_abnormal, 3377) |
|
abnormal_samples = abnormal_samples[r] |
|
abnormal_targets = abnormal_targets[r] |
|
|
|
data = np.r_[normal_samples, abnormal_samples] |
|
target = np.r_[normal_targets, abnormal_targets] |
|
|
|
if subset == "SF" or subset == "http" or subset == "smtp": |
|
|
|
s = data[:, 11] == 1 |
|
data = np.c_[data[s, :11], data[s, 12:]] |
|
feature_names = feature_names[:11] + feature_names[12:] |
|
target = target[s] |
|
|
|
data[:, 0] = np.log((data[:, 0] + 0.1).astype(float, copy=False)) |
|
data[:, 4] = np.log((data[:, 4] + 0.1).astype(float, copy=False)) |
|
data[:, 5] = np.log((data[:, 5] + 0.1).astype(float, copy=False)) |
|
|
|
if subset == "http": |
|
s = data[:, 2] == b"http" |
|
data = data[s] |
|
target = target[s] |
|
data = np.c_[data[:, 0], data[:, 4], data[:, 5]] |
|
feature_names = [feature_names[0], feature_names[4], feature_names[5]] |
|
|
|
if subset == "smtp": |
|
s = data[:, 2] == b"smtp" |
|
data = data[s] |
|
target = target[s] |
|
data = np.c_[data[:, 0], data[:, 4], data[:, 5]] |
|
feature_names = [feature_names[0], feature_names[4], feature_names[5]] |
|
|
|
if subset == "SF": |
|
data = np.c_[data[:, 0], data[:, 2], data[:, 4], data[:, 5]] |
|
feature_names = [ |
|
feature_names[0], |
|
feature_names[2], |
|
feature_names[4], |
|
feature_names[5], |
|
] |
|
|
|
if shuffle: |
|
data, target = shuffle_method(data, target, random_state=random_state) |
|
|
|
fdescr = load_descr("kddcup99.rst") |
|
|
|
frame = None |
|
if as_frame: |
|
frame, data, target = _convert_data_dataframe( |
|
"fetch_kddcup99", data, target, feature_names, target_names |
|
) |
|
|
|
if return_X_y: |
|
return data, target |
|
|
|
return Bunch( |
|
data=data, |
|
target=target, |
|
frame=frame, |
|
target_names=target_names, |
|
feature_names=feature_names, |
|
DESCR=fdescr, |
|
) |
|
|
|
|
|
def _fetch_brute_kddcup99( |
|
data_home=None, download_if_missing=True, percent10=True, n_retries=3, delay=1.0 |
|
): |
|
"""Load the kddcup99 dataset, downloading it if necessary. |
|
|
|
Parameters |
|
---------- |
|
data_home : str, default=None |
|
Specify another download and cache folder for the datasets. By default |
|
all scikit-learn data is stored in '~/scikit_learn_data' subfolders. |
|
|
|
download_if_missing : bool, default=True |
|
If False, raise an OSError if the data is not locally available |
|
instead of trying to download the data from the source site. |
|
|
|
percent10 : bool, default=True |
|
Whether to load only 10 percent of the data. |
|
|
|
n_retries : int, default=3 |
|
Number of retries when HTTP errors are encountered. |
|
|
|
delay : float, default=1.0 |
|
Number of seconds between retries. |
|
|
|
Returns |
|
------- |
|
dataset : :class:`~sklearn.utils.Bunch` |
|
Dictionary-like object, with the following attributes. |
|
|
|
data : ndarray of shape (494021, 41) |
|
Each row corresponds to the 41 features in the dataset. |
|
target : ndarray of shape (494021,) |
|
Each value corresponds to one of the 21 attack types or to the |
|
label 'normal.'. |
|
feature_names : list |
|
The names of the dataset columns |
|
target_names: list |
|
The names of the target columns |
|
DESCR : str |
|
Description of the kddcup99 dataset. |
|
|
|
""" |
|
|
|
data_home = get_data_home(data_home=data_home) |
|
dir_suffix = "-py3" |
|
|
|
if percent10: |
|
kddcup_dir = join(data_home, "kddcup99_10" + dir_suffix) |
|
archive = ARCHIVE_10_PERCENT |
|
else: |
|
kddcup_dir = join(data_home, "kddcup99" + dir_suffix) |
|
archive = ARCHIVE |
|
|
|
samples_path = join(kddcup_dir, "samples") |
|
targets_path = join(kddcup_dir, "targets") |
|
available = exists(samples_path) |
|
|
|
dt = [ |
|
("duration", int), |
|
("protocol_type", "S4"), |
|
("service", "S11"), |
|
("flag", "S6"), |
|
("src_bytes", int), |
|
("dst_bytes", int), |
|
("land", int), |
|
("wrong_fragment", int), |
|
("urgent", int), |
|
("hot", int), |
|
("num_failed_logins", int), |
|
("logged_in", int), |
|
("num_compromised", int), |
|
("root_shell", int), |
|
("su_attempted", int), |
|
("num_root", int), |
|
("num_file_creations", int), |
|
("num_shells", int), |
|
("num_access_files", int), |
|
("num_outbound_cmds", int), |
|
("is_host_login", int), |
|
("is_guest_login", int), |
|
("count", int), |
|
("srv_count", int), |
|
("serror_rate", float), |
|
("srv_serror_rate", float), |
|
("rerror_rate", float), |
|
("srv_rerror_rate", float), |
|
("same_srv_rate", float), |
|
("diff_srv_rate", float), |
|
("srv_diff_host_rate", float), |
|
("dst_host_count", int), |
|
("dst_host_srv_count", int), |
|
("dst_host_same_srv_rate", float), |
|
("dst_host_diff_srv_rate", float), |
|
("dst_host_same_src_port_rate", float), |
|
("dst_host_srv_diff_host_rate", float), |
|
("dst_host_serror_rate", float), |
|
("dst_host_srv_serror_rate", float), |
|
("dst_host_rerror_rate", float), |
|
("dst_host_srv_rerror_rate", float), |
|
("labels", "S16"), |
|
] |
|
|
|
column_names = [c[0] for c in dt] |
|
target_names = column_names[-1] |
|
feature_names = column_names[:-1] |
|
|
|
if available: |
|
try: |
|
X = joblib.load(samples_path) |
|
y = joblib.load(targets_path) |
|
except Exception as e: |
|
raise OSError( |
|
"The cache for fetch_kddcup99 is invalid, please delete " |
|
f"{str(kddcup_dir)} and run the fetch_kddcup99 again" |
|
) from e |
|
|
|
elif download_if_missing: |
|
_mkdirp(kddcup_dir) |
|
logger.info("Downloading %s" % archive.url) |
|
_fetch_remote(archive, dirname=kddcup_dir, n_retries=n_retries, delay=delay) |
|
DT = np.dtype(dt) |
|
logger.debug("extracting archive") |
|
archive_path = join(kddcup_dir, archive.filename) |
|
file_ = GzipFile(filename=archive_path, mode="r") |
|
Xy = [] |
|
for line in file_.readlines(): |
|
line = line.decode() |
|
Xy.append(line.replace("\n", "").split(",")) |
|
file_.close() |
|
logger.debug("extraction done") |
|
os.remove(archive_path) |
|
|
|
Xy = np.asarray(Xy, dtype=object) |
|
for j in range(42): |
|
Xy[:, j] = Xy[:, j].astype(DT[j]) |
|
|
|
X = Xy[:, :-1] |
|
y = Xy[:, -1] |
|
|
|
|
|
|
|
|
|
joblib.dump(X, samples_path, compress=0) |
|
joblib.dump(y, targets_path, compress=0) |
|
else: |
|
raise OSError("Data not found and `download_if_missing` is False") |
|
|
|
return Bunch( |
|
data=X, |
|
target=y, |
|
feature_names=feature_names, |
|
target_names=[target_names], |
|
) |
|
|
|
|
|
def _mkdirp(d): |
|
"""Ensure directory d exists (like mkdir -p on Unix) |
|
No guarantee that the directory is writable. |
|
""" |
|
try: |
|
os.makedirs(d) |
|
except OSError as e: |
|
if e.errno != errno.EEXIST: |
|
raise |
|
|