|
""" |
|
Additional statistics functions with support for masked arrays. |
|
|
|
""" |
|
|
|
|
|
|
|
|
|
__all__ = ['compare_medians_ms', |
|
'hdquantiles', 'hdmedian', 'hdquantiles_sd', |
|
'idealfourths', |
|
'median_cihs','mjci','mquantiles_cimj', |
|
'rsh', |
|
'trimmed_mean_ci',] |
|
|
|
|
|
import numpy as np |
|
from numpy import float64, ndarray |
|
|
|
import numpy.ma as ma |
|
from numpy.ma import MaskedArray |
|
|
|
from . import _mstats_basic as mstats |
|
|
|
from scipy.stats.distributions import norm, beta, t, binom |
|
|
|
|
|
def hdquantiles(data, prob=(.25, .5, .75), axis=None, var=False,): |
|
""" |
|
Computes quantile estimates with the Harrell-Davis method. |
|
|
|
The quantile estimates are calculated as a weighted linear combination |
|
of order statistics. |
|
|
|
Parameters |
|
---------- |
|
data : array_like |
|
Data array. |
|
prob : sequence, optional |
|
Sequence of probabilities at which to compute the quantiles. |
|
axis : int or None, optional |
|
Axis along which to compute the quantiles. If None, use a flattened |
|
array. |
|
var : bool, optional |
|
Whether to return the variance of the estimate. |
|
|
|
Returns |
|
------- |
|
hdquantiles : MaskedArray |
|
A (p,) array of quantiles (if `var` is False), or a (2,p) array of |
|
quantiles and variances (if `var` is True), where ``p`` is the |
|
number of quantiles. |
|
|
|
See Also |
|
-------- |
|
hdquantiles_sd |
|
|
|
Examples |
|
-------- |
|
>>> import numpy as np |
|
>>> from scipy.stats.mstats import hdquantiles |
|
>>> |
|
>>> # Sample data |
|
>>> data = np.array([1.2, 2.5, 3.7, 4.0, 5.1, 6.3, 7.0, 8.2, 9.4]) |
|
>>> |
|
>>> # Probabilities at which to compute quantiles |
|
>>> probabilities = [0.25, 0.5, 0.75] |
|
>>> |
|
>>> # Compute Harrell-Davis quantile estimates |
|
>>> quantile_estimates = hdquantiles(data, prob=probabilities) |
|
>>> |
|
>>> # Display the quantile estimates |
|
>>> for i, quantile in enumerate(probabilities): |
|
... print(f"{int(quantile * 100)}th percentile: {quantile_estimates[i]}") |
|
25th percentile: 3.1505820231763066 # may vary |
|
50th percentile: 5.194344084883956 |
|
75th percentile: 7.430626414674935 |
|
|
|
""" |
|
def _hd_1D(data,prob,var): |
|
"Computes the HD quantiles for a 1D array. Returns nan for invalid data." |
|
xsorted = np.squeeze(np.sort(data.compressed().view(ndarray))) |
|
|
|
n = xsorted.size |
|
|
|
hd = np.empty((2,len(prob)), float64) |
|
if n < 2: |
|
hd.flat = np.nan |
|
if var: |
|
return hd |
|
return hd[0] |
|
|
|
v = np.arange(n+1) / float(n) |
|
betacdf = beta.cdf |
|
for (i,p) in enumerate(prob): |
|
_w = betacdf(v, (n+1)*p, (n+1)*(1-p)) |
|
w = _w[1:] - _w[:-1] |
|
hd_mean = np.dot(w, xsorted) |
|
hd[0,i] = hd_mean |
|
|
|
hd[1,i] = np.dot(w, (xsorted-hd_mean)**2) |
|
|
|
hd[0, prob == 0] = xsorted[0] |
|
hd[0, prob == 1] = xsorted[-1] |
|
if var: |
|
hd[1, prob == 0] = hd[1, prob == 1] = np.nan |
|
return hd |
|
return hd[0] |
|
|
|
data = ma.array(data, copy=False, dtype=float64) |
|
p = np.atleast_1d(np.asarray(prob)) |
|
|
|
if (axis is None) or (data.ndim == 1): |
|
result = _hd_1D(data, p, var) |
|
else: |
|
if data.ndim > 2: |
|
raise ValueError("Array 'data' must be at most two dimensional, " |
|
"but got data.ndim = %d" % data.ndim) |
|
result = ma.apply_along_axis(_hd_1D, axis, data, p, var) |
|
|
|
return ma.fix_invalid(result, copy=False) |
|
|
|
|
|
def hdmedian(data, axis=-1, var=False): |
|
""" |
|
Returns the Harrell-Davis estimate of the median along the given axis. |
|
|
|
Parameters |
|
---------- |
|
data : ndarray |
|
Data array. |
|
axis : int, optional |
|
Axis along which to compute the quantiles. If None, use a flattened |
|
array. |
|
var : bool, optional |
|
Whether to return the variance of the estimate. |
|
|
|
Returns |
|
------- |
|
hdmedian : MaskedArray |
|
The median values. If ``var=True``, the variance is returned inside |
|
the masked array. E.g. for a 1-D array the shape change from (1,) to |
|
(2,). |
|
|
|
""" |
|
result = hdquantiles(data,[0.5], axis=axis, var=var) |
|
return result.squeeze() |
|
|
|
|
|
def hdquantiles_sd(data, prob=(.25, .5, .75), axis=None): |
|
""" |
|
The standard error of the Harrell-Davis quantile estimates by jackknife. |
|
|
|
Parameters |
|
---------- |
|
data : array_like |
|
Data array. |
|
prob : sequence, optional |
|
Sequence of quantiles to compute. |
|
axis : int, optional |
|
Axis along which to compute the quantiles. If None, use a flattened |
|
array. |
|
|
|
Returns |
|
------- |
|
hdquantiles_sd : MaskedArray |
|
Standard error of the Harrell-Davis quantile estimates. |
|
|
|
See Also |
|
-------- |
|
hdquantiles |
|
|
|
""" |
|
def _hdsd_1D(data, prob): |
|
"Computes the std error for 1D arrays." |
|
xsorted = np.sort(data.compressed()) |
|
n = len(xsorted) |
|
|
|
hdsd = np.empty(len(prob), float64) |
|
if n < 2: |
|
hdsd.flat = np.nan |
|
|
|
vv = np.arange(n) / float(n-1) |
|
betacdf = beta.cdf |
|
|
|
for (i,p) in enumerate(prob): |
|
_w = betacdf(vv, n*p, n*(1-p)) |
|
w = _w[1:] - _w[:-1] |
|
|
|
|
|
mx_ = np.zeros_like(xsorted) |
|
mx_[1:] = np.cumsum(w * xsorted[:-1]) |
|
|
|
mx_[:-1] += np.cumsum(w[::-1] * xsorted[:0:-1])[::-1] |
|
hdsd[i] = np.sqrt(mx_.var() * (n - 1)) |
|
return hdsd |
|
|
|
|
|
data = ma.array(data, copy=False, dtype=float64) |
|
p = np.atleast_1d(np.asarray(prob)) |
|
|
|
if (axis is None): |
|
result = _hdsd_1D(data, p) |
|
else: |
|
if data.ndim > 2: |
|
raise ValueError("Array 'data' must be at most two dimensional, " |
|
"but got data.ndim = %d" % data.ndim) |
|
result = ma.apply_along_axis(_hdsd_1D, axis, data, p) |
|
|
|
return ma.fix_invalid(result, copy=False).ravel() |
|
|
|
|
|
def trimmed_mean_ci(data, limits=(0.2,0.2), inclusive=(True,True), |
|
alpha=0.05, axis=None): |
|
""" |
|
Selected confidence interval of the trimmed mean along the given axis. |
|
|
|
Parameters |
|
---------- |
|
data : array_like |
|
Input data. |
|
limits : {None, tuple}, optional |
|
None or a two item tuple. |
|
Tuple of the percentages to cut on each side of the array, with respect |
|
to the number of unmasked data, as floats between 0. and 1. If ``n`` |
|
is the number of unmasked data before trimming, then |
|
(``n * limits[0]``)th smallest data and (``n * limits[1]``)th |
|
largest data are masked. The total number of unmasked data after |
|
trimming is ``n * (1. - sum(limits))``. |
|
The value of one limit can be set to None to indicate an open interval. |
|
|
|
Defaults to (0.2, 0.2). |
|
inclusive : (2,) tuple of boolean, optional |
|
If relative==False, tuple indicating whether values exactly equal to |
|
the absolute limits are allowed. |
|
If relative==True, tuple indicating whether the number of data being |
|
masked on each side should be rounded (True) or truncated (False). |
|
|
|
Defaults to (True, True). |
|
alpha : float, optional |
|
Confidence level of the intervals. |
|
|
|
Defaults to 0.05. |
|
axis : int, optional |
|
Axis along which to cut. If None, uses a flattened version of `data`. |
|
|
|
Defaults to None. |
|
|
|
Returns |
|
------- |
|
trimmed_mean_ci : (2,) ndarray |
|
The lower and upper confidence intervals of the trimmed data. |
|
|
|
""" |
|
data = ma.array(data, copy=False) |
|
trimmed = mstats.trimr(data, limits=limits, inclusive=inclusive, axis=axis) |
|
tmean = trimmed.mean(axis) |
|
tstde = mstats.trimmed_stde(data,limits=limits,inclusive=inclusive,axis=axis) |
|
df = trimmed.count(axis) - 1 |
|
tppf = t.ppf(1-alpha/2.,df) |
|
return np.array((tmean - tppf*tstde, tmean+tppf*tstde)) |
|
|
|
|
|
def mjci(data, prob=(0.25, 0.5, 0.75), axis=None): |
|
""" |
|
Returns the Maritz-Jarrett estimators of the standard error of selected |
|
experimental quantiles of the data. |
|
|
|
Parameters |
|
---------- |
|
data : ndarray |
|
Data array. |
|
prob : sequence, optional |
|
Sequence of quantiles to compute. |
|
axis : int or None, optional |
|
Axis along which to compute the quantiles. If None, use a flattened |
|
array. |
|
|
|
""" |
|
def _mjci_1D(data, p): |
|
data = np.sort(data.compressed()) |
|
n = data.size |
|
prob = (np.array(p) * n + 0.5).astype(int) |
|
betacdf = beta.cdf |
|
|
|
mj = np.empty(len(prob), float64) |
|
x = np.arange(1,n+1, dtype=float64) / n |
|
y = x - 1./n |
|
for (i,m) in enumerate(prob): |
|
W = betacdf(x,m-1,n-m) - betacdf(y,m-1,n-m) |
|
C1 = np.dot(W,data) |
|
C2 = np.dot(W,data**2) |
|
mj[i] = np.sqrt(C2 - C1**2) |
|
return mj |
|
|
|
data = ma.array(data, copy=False) |
|
if data.ndim > 2: |
|
raise ValueError("Array 'data' must be at most two dimensional, " |
|
"but got data.ndim = %d" % data.ndim) |
|
|
|
p = np.atleast_1d(np.asarray(prob)) |
|
|
|
if (axis is None): |
|
return _mjci_1D(data, p) |
|
else: |
|
return ma.apply_along_axis(_mjci_1D, axis, data, p) |
|
|
|
|
|
def mquantiles_cimj(data, prob=(0.25, 0.50, 0.75), alpha=0.05, axis=None): |
|
""" |
|
Computes the alpha confidence interval for the selected quantiles of the |
|
data, with Maritz-Jarrett estimators. |
|
|
|
Parameters |
|
---------- |
|
data : ndarray |
|
Data array. |
|
prob : sequence, optional |
|
Sequence of quantiles to compute. |
|
alpha : float, optional |
|
Confidence level of the intervals. |
|
axis : int or None, optional |
|
Axis along which to compute the quantiles. |
|
If None, use a flattened array. |
|
|
|
Returns |
|
------- |
|
ci_lower : ndarray |
|
The lower boundaries of the confidence interval. Of the same length as |
|
`prob`. |
|
ci_upper : ndarray |
|
The upper boundaries of the confidence interval. Of the same length as |
|
`prob`. |
|
|
|
""" |
|
alpha = min(alpha, 1 - alpha) |
|
z = norm.ppf(1 - alpha/2.) |
|
xq = mstats.mquantiles(data, prob, alphap=0, betap=0, axis=axis) |
|
smj = mjci(data, prob, axis=axis) |
|
return (xq - z * smj, xq + z * smj) |
|
|
|
|
|
def median_cihs(data, alpha=0.05, axis=None): |
|
""" |
|
Computes the alpha-level confidence interval for the median of the data. |
|
|
|
Uses the Hettmasperger-Sheather method. |
|
|
|
Parameters |
|
---------- |
|
data : array_like |
|
Input data. Masked values are discarded. The input should be 1D only, |
|
or `axis` should be set to None. |
|
alpha : float, optional |
|
Confidence level of the intervals. |
|
axis : int or None, optional |
|
Axis along which to compute the quantiles. If None, use a flattened |
|
array. |
|
|
|
Returns |
|
------- |
|
median_cihs |
|
Alpha level confidence interval. |
|
|
|
""" |
|
def _cihs_1D(data, alpha): |
|
data = np.sort(data.compressed()) |
|
n = len(data) |
|
alpha = min(alpha, 1-alpha) |
|
k = int(binom._ppf(alpha/2., n, 0.5)) |
|
gk = binom.cdf(n-k,n,0.5) - binom.cdf(k-1,n,0.5) |
|
if gk < 1-alpha: |
|
k -= 1 |
|
gk = binom.cdf(n-k,n,0.5) - binom.cdf(k-1,n,0.5) |
|
gkk = binom.cdf(n-k-1,n,0.5) - binom.cdf(k,n,0.5) |
|
I = (gk - 1 + alpha)/(gk - gkk) |
|
lambd = (n-k) * I / float(k + (n-2*k)*I) |
|
lims = (lambd*data[k] + (1-lambd)*data[k-1], |
|
lambd*data[n-k-1] + (1-lambd)*data[n-k]) |
|
return lims |
|
data = ma.array(data, copy=False) |
|
|
|
if (axis is None): |
|
result = _cihs_1D(data, alpha) |
|
else: |
|
if data.ndim > 2: |
|
raise ValueError("Array 'data' must be at most two dimensional, " |
|
"but got data.ndim = %d" % data.ndim) |
|
result = ma.apply_along_axis(_cihs_1D, axis, data, alpha) |
|
|
|
return result |
|
|
|
|
|
def compare_medians_ms(group_1, group_2, axis=None): |
|
""" |
|
Compares the medians from two independent groups along the given axis. |
|
|
|
The comparison is performed using the McKean-Schrader estimate of the |
|
standard error of the medians. |
|
|
|
Parameters |
|
---------- |
|
group_1 : array_like |
|
First dataset. Has to be of size >=7. |
|
group_2 : array_like |
|
Second dataset. Has to be of size >=7. |
|
axis : int, optional |
|
Axis along which the medians are estimated. If None, the arrays are |
|
flattened. If `axis` is not None, then `group_1` and `group_2` |
|
should have the same shape. |
|
|
|
Returns |
|
------- |
|
compare_medians_ms : {float, ndarray} |
|
If `axis` is None, then returns a float, otherwise returns a 1-D |
|
ndarray of floats with a length equal to the length of `group_1` |
|
along `axis`. |
|
|
|
Examples |
|
-------- |
|
|
|
>>> from scipy import stats |
|
>>> a = [1, 2, 3, 4, 5, 6, 7] |
|
>>> b = [8, 9, 10, 11, 12, 13, 14] |
|
>>> stats.mstats.compare_medians_ms(a, b, axis=None) |
|
1.0693225866553746e-05 |
|
|
|
The function is vectorized to compute along a given axis. |
|
|
|
>>> import numpy as np |
|
>>> rng = np.random.default_rng() |
|
>>> x = rng.random(size=(3, 7)) |
|
>>> y = rng.random(size=(3, 8)) |
|
>>> stats.mstats.compare_medians_ms(x, y, axis=1) |
|
array([0.36908985, 0.36092538, 0.2765313 ]) |
|
|
|
References |
|
---------- |
|
.. [1] McKean, Joseph W., and Ronald M. Schrader. "A comparison of methods |
|
for studentizing the sample median." Communications in |
|
Statistics-Simulation and Computation 13.6 (1984): 751-773. |
|
|
|
""" |
|
(med_1, med_2) = (ma.median(group_1,axis=axis), ma.median(group_2,axis=axis)) |
|
(std_1, std_2) = (mstats.stde_median(group_1, axis=axis), |
|
mstats.stde_median(group_2, axis=axis)) |
|
W = np.abs(med_1 - med_2) / ma.sqrt(std_1**2 + std_2**2) |
|
return 1 - norm.cdf(W) |
|
|
|
|
|
def idealfourths(data, axis=None): |
|
""" |
|
Returns an estimate of the lower and upper quartiles. |
|
|
|
Uses the ideal fourths algorithm. |
|
|
|
Parameters |
|
---------- |
|
data : array_like |
|
Input array. |
|
axis : int, optional |
|
Axis along which the quartiles are estimated. If None, the arrays are |
|
flattened. |
|
|
|
Returns |
|
------- |
|
idealfourths : {list of floats, masked array} |
|
Returns the two internal values that divide `data` into four parts |
|
using the ideal fourths algorithm either along the flattened array |
|
(if `axis` is None) or along `axis` of `data`. |
|
|
|
""" |
|
def _idf(data): |
|
x = data.compressed() |
|
n = len(x) |
|
if n < 3: |
|
return [np.nan,np.nan] |
|
(j,h) = divmod(n/4. + 5/12.,1) |
|
j = int(j) |
|
qlo = (1-h)*x[j-1] + h*x[j] |
|
k = n - j |
|
qup = (1-h)*x[k] + h*x[k-1] |
|
return [qlo, qup] |
|
data = ma.sort(data, axis=axis).view(MaskedArray) |
|
if (axis is None): |
|
return _idf(data) |
|
else: |
|
return ma.apply_along_axis(_idf, axis, data) |
|
|
|
|
|
def rsh(data, points=None): |
|
""" |
|
Evaluates Rosenblatt's shifted histogram estimators for each data point. |
|
|
|
Rosenblatt's estimator is a centered finite-difference approximation to the |
|
derivative of the empirical cumulative distribution function. |
|
|
|
Parameters |
|
---------- |
|
data : sequence |
|
Input data, should be 1-D. Masked values are ignored. |
|
points : sequence or None, optional |
|
Sequence of points where to evaluate Rosenblatt shifted histogram. |
|
If None, use the data. |
|
|
|
""" |
|
data = ma.array(data, copy=False) |
|
if points is None: |
|
points = data |
|
else: |
|
points = np.atleast_1d(np.asarray(points)) |
|
|
|
if data.ndim != 1: |
|
raise AttributeError("The input array should be 1D only !") |
|
|
|
n = data.count() |
|
r = idealfourths(data, axis=None) |
|
h = 1.2 * (r[-1]-r[0]) / n**(1./5) |
|
nhi = (data[:,None] <= points[None,:] + h).sum(0) |
|
nlo = (data[:,None] < points[None,:] - h).sum(0) |
|
return (nhi-nlo) / (2.*n*h) |
|
|