|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import functools |
|
import itertools |
|
import operator |
|
import platform |
|
import sys |
|
|
|
import numpy as np |
|
from numpy import (array, isnan, r_, arange, finfo, pi, sin, cos, tan, exp, |
|
log, zeros, sqrt, asarray, inf, nan_to_num, real, arctan, double, |
|
array_equal) |
|
|
|
import pytest |
|
from pytest import raises as assert_raises |
|
from numpy.testing import (assert_equal, assert_almost_equal, |
|
assert_array_equal, assert_array_almost_equal, assert_approx_equal, |
|
assert_, assert_allclose, assert_array_almost_equal_nulp, |
|
suppress_warnings) |
|
|
|
from scipy import special |
|
import scipy.special._ufuncs as cephes |
|
from scipy.special import ellipe, ellipk, ellipkm1 |
|
from scipy.special import elliprc, elliprd, elliprf, elliprg, elliprj |
|
from scipy.special import softplus |
|
from scipy.special import mathieu_odd_coef, mathieu_even_coef, stirling2 |
|
from scipy.special import lpn, lpmn, clpmn |
|
from scipy._lib._util import np_long, np_ulong |
|
from scipy._lib._array_api import xp_assert_close, xp_assert_equal, SCIPY_ARRAY_API |
|
|
|
from scipy.special._basic import ( |
|
_FACTORIALK_LIMITS_64BITS, _FACTORIALK_LIMITS_32BITS, _is_subdtype |
|
) |
|
from scipy.special._testutils import with_special_errors, \ |
|
assert_func_equal, FuncData |
|
|
|
import math |
|
|
|
|
|
native_int = np.int32 if ( |
|
sys.platform == 'win32' |
|
or platform.architecture()[0] == "32bit" |
|
) else np.int64 |
|
|
|
|
|
class TestCephes: |
|
def test_airy(self): |
|
cephes.airy(0) |
|
|
|
def test_airye(self): |
|
cephes.airye(0) |
|
|
|
def test_binom(self): |
|
n = np.array([0.264, 4, 5.2, 17]) |
|
k = np.array([2, 0.4, 7, 3.3]) |
|
nk = np.array(np.broadcast_arrays(n[:,None], k[None,:]) |
|
).reshape(2, -1).T |
|
rknown = np.array([[-0.097152, 0.9263051596159367, 0.01858423645695389, |
|
-0.007581020651518199],[6, 2.0214389119675666, 0, 2.9827344527963846], |
|
[10.92, 2.22993515861399, -0.00585728, 10.468891352063146], |
|
[136, 3.5252179590758828, 19448, 1024.5526916174495]]) |
|
assert_func_equal(cephes.binom, rknown.ravel(), nk, rtol=1e-13) |
|
|
|
|
|
rng = np.random.RandomState(1234) |
|
n = np.r_[np.arange(-7, 30), 1000*rng.rand(30) - 500] |
|
k = np.arange(0, 102) |
|
nk = np.array(np.broadcast_arrays(n[:,None], k[None,:]) |
|
).reshape(2, -1).T |
|
|
|
assert_func_equal(cephes.binom, |
|
cephes.binom(nk[:,0], nk[:,1] * (1 + 1e-15)), |
|
nk, |
|
atol=1e-10, rtol=1e-10) |
|
|
|
def test_binom_2(self): |
|
|
|
np.random.seed(1234) |
|
n = np.r_[np.logspace(1, 300, 20)] |
|
k = np.arange(0, 102) |
|
nk = np.array(np.broadcast_arrays(n[:,None], k[None,:]) |
|
).reshape(2, -1).T |
|
|
|
assert_func_equal(cephes.binom, |
|
cephes.binom(nk[:,0], nk[:,1] * (1 + 1e-15)), |
|
nk, |
|
atol=1e-10, rtol=1e-10) |
|
|
|
def test_binom_exact(self): |
|
@np.vectorize |
|
def binom_int(n, k): |
|
n = int(n) |
|
k = int(k) |
|
num = 1 |
|
den = 1 |
|
for i in range(1, k+1): |
|
num *= i + n - k |
|
den *= i |
|
return float(num/den) |
|
|
|
np.random.seed(1234) |
|
n = np.arange(1, 15) |
|
k = np.arange(0, 15) |
|
nk = np.array(np.broadcast_arrays(n[:,None], k[None,:]) |
|
).reshape(2, -1).T |
|
nk = nk[nk[:,0] >= nk[:,1]] |
|
assert_func_equal(cephes.binom, |
|
binom_int(nk[:,0], nk[:,1]), |
|
nk, |
|
atol=0, rtol=0) |
|
|
|
def test_binom_nooverflow_8346(self): |
|
|
|
dataset = [ |
|
(1000, 500, 2.70288240945436551e+299), |
|
(1002, 501, 1.08007396880791225e+300), |
|
(1004, 502, 4.31599279169058121e+300), |
|
(1006, 503, 1.72468101616263781e+301), |
|
(1008, 504, 6.89188009236419153e+301), |
|
(1010, 505, 2.75402257948335448e+302), |
|
(1012, 506, 1.10052048531923757e+303), |
|
(1014, 507, 4.39774063758732849e+303), |
|
(1016, 508, 1.75736486108312519e+304), |
|
(1018, 509, 7.02255427788423734e+304), |
|
(1020, 510, 2.80626776829962255e+305), |
|
(1022, 511, 1.12140876377061240e+306), |
|
(1024, 512, 4.48125455209897109e+306), |
|
(1026, 513, 1.79075474304149900e+307), |
|
(1028, 514, 7.15605105487789676e+307) |
|
] |
|
dataset = np.asarray(dataset) |
|
FuncData(cephes.binom, dataset, (0, 1), 2, rtol=1e-12).check() |
|
|
|
def test_bdtr(self): |
|
assert_equal(cephes.bdtr(1,1,0.5),1.0) |
|
|
|
def test_bdtri(self): |
|
assert_equal(cephes.bdtri(1,3,0.5),0.5) |
|
|
|
def test_bdtrc(self): |
|
assert_equal(cephes.bdtrc(1,3,0.5),0.5) |
|
|
|
def test_bdtrin(self): |
|
assert_equal(cephes.bdtrin(1,0,1),5.0) |
|
|
|
def test_bdtrik(self): |
|
cephes.bdtrik(1,3,0.5) |
|
|
|
def test_bei(self): |
|
assert_equal(cephes.bei(0),0.0) |
|
|
|
def test_beip(self): |
|
assert_equal(cephes.beip(0),0.0) |
|
|
|
def test_ber(self): |
|
assert_equal(cephes.ber(0),1.0) |
|
|
|
def test_berp(self): |
|
assert_equal(cephes.berp(0),0.0) |
|
|
|
def test_besselpoly(self): |
|
assert_equal(cephes.besselpoly(0,0,0),1.0) |
|
|
|
def test_btdtria(self): |
|
assert_equal(cephes.btdtria(1,1,1),5.0) |
|
|
|
def test_btdtrib(self): |
|
assert_equal(cephes.btdtrib(1,1,1),5.0) |
|
|
|
def test_cbrt(self): |
|
assert_approx_equal(cephes.cbrt(1),1.0) |
|
|
|
def test_chdtr(self): |
|
assert_equal(cephes.chdtr(1,0),0.0) |
|
|
|
def test_chdtrc(self): |
|
assert_equal(cephes.chdtrc(1,0),1.0) |
|
|
|
def test_chdtri(self): |
|
assert_equal(cephes.chdtri(1,1),0.0) |
|
|
|
def test_chdtriv(self): |
|
assert_equal(cephes.chdtriv(0,0),5.0) |
|
|
|
def test_chndtr(self): |
|
assert_equal(cephes.chndtr(0,1,0),0.0) |
|
|
|
|
|
|
|
|
|
values = np.array([ |
|
[25.00, 20.0, 400, 4.1210655112396197139e-57], |
|
[25.00, 8.00, 250, 2.3988026526832425878e-29], |
|
[0.001, 8.00, 40., 5.3761806201366039084e-24], |
|
[0.010, 8.00, 40., 5.45396231055999457039e-20], |
|
[20.00, 2.00, 107, 1.39390743555819597802e-9], |
|
[22.50, 2.00, 107, 7.11803307138105870671e-9], |
|
[25.00, 2.00, 107, 3.11041244829864897313e-8], |
|
[3.000, 2.00, 1.0, 0.62064365321954362734], |
|
[350.0, 300., 10., 0.93880128006276407710], |
|
[100.0, 13.5, 10., 0.99999999650104210949], |
|
[700.0, 20.0, 400, 0.99999999925680650105], |
|
[150.0, 13.5, 10., 0.99999999999999983046], |
|
[160.0, 13.5, 10., 0.99999999999999999518], |
|
]) |
|
cdf = cephes.chndtr(values[:, 0], values[:, 1], values[:, 2]) |
|
assert_allclose(cdf, values[:, 3], rtol=1e-12) |
|
|
|
assert_almost_equal(cephes.chndtr(np.inf, np.inf, 0), 2.0) |
|
assert_almost_equal(cephes.chndtr(2, 1, np.inf), 0.0) |
|
assert_(np.isnan(cephes.chndtr(np.nan, 1, 2))) |
|
assert_(np.isnan(cephes.chndtr(5, np.nan, 2))) |
|
assert_(np.isnan(cephes.chndtr(5, 1, np.nan))) |
|
|
|
def test_chndtridf(self): |
|
assert_equal(cephes.chndtridf(0,0,1),5.0) |
|
|
|
def test_chndtrinc(self): |
|
assert_equal(cephes.chndtrinc(0,1,0),5.0) |
|
|
|
def test_chndtrix(self): |
|
assert_equal(cephes.chndtrix(0,1,0),0.0) |
|
|
|
def test_cosdg(self): |
|
assert_equal(cephes.cosdg(0),1.0) |
|
|
|
def test_cosm1(self): |
|
assert_equal(cephes.cosm1(0),0.0) |
|
|
|
def test_cotdg(self): |
|
assert_almost_equal(cephes.cotdg(45),1.0) |
|
|
|
def test_dawsn(self): |
|
assert_equal(cephes.dawsn(0),0.0) |
|
assert_allclose(cephes.dawsn(1.23), 0.50053727749081767) |
|
|
|
def test_diric(self): |
|
|
|
|
|
n_odd = [1, 5, 25] |
|
x = np.array(2*np.pi + 5e-5).astype(np.float32) |
|
assert_almost_equal(special.diric(x, n_odd), 1.0, decimal=7) |
|
x = np.array(2*np.pi + 1e-9).astype(np.float64) |
|
assert_almost_equal(special.diric(x, n_odd), 1.0, decimal=15) |
|
x = np.array(2*np.pi + 1e-15).astype(np.float64) |
|
assert_almost_equal(special.diric(x, n_odd), 1.0, decimal=15) |
|
if hasattr(np, 'float128'): |
|
|
|
x = np.array(2*np.pi + 1e-12).astype(np.float128) |
|
assert_almost_equal(special.diric(x, n_odd), 1.0, decimal=19) |
|
|
|
n_even = [2, 4, 24] |
|
x = np.array(2*np.pi + 1e-9).astype(np.float64) |
|
assert_almost_equal(special.diric(x, n_even), -1.0, decimal=15) |
|
|
|
|
|
x = np.arange(0.2*np.pi, 1.0*np.pi, 0.2*np.pi) |
|
octave_result = [0.872677996249965, 0.539344662916632, |
|
0.127322003750035, -0.206011329583298] |
|
assert_almost_equal(special.diric(x, 3), octave_result, decimal=15) |
|
|
|
def test_diric_broadcasting(self): |
|
x = np.arange(5) |
|
n = np.array([1, 3, 7]) |
|
assert_(special.diric(x[:, np.newaxis], n).shape == (x.size, n.size)) |
|
|
|
def test_ellipe(self): |
|
assert_equal(cephes.ellipe(1),1.0) |
|
|
|
def test_ellipeinc(self): |
|
assert_equal(cephes.ellipeinc(0,1),0.0) |
|
|
|
def test_ellipj(self): |
|
cephes.ellipj(0,1) |
|
|
|
def test_ellipk(self): |
|
assert_allclose(ellipk(0), pi/2) |
|
|
|
def test_ellipkinc(self): |
|
assert_equal(cephes.ellipkinc(0,0),0.0) |
|
|
|
def test_erf(self): |
|
assert_equal(cephes.erf(0), 0.0) |
|
|
|
def test_erf_symmetry(self): |
|
x = 5.905732037710919 |
|
assert_equal(cephes.erf(x) + cephes.erf(-x), 0.0) |
|
|
|
def test_erfc(self): |
|
assert_equal(cephes.erfc(0), 1.0) |
|
|
|
def test_exp10(self): |
|
assert_approx_equal(cephes.exp10(2),100.0) |
|
|
|
def test_exp2(self): |
|
assert_equal(cephes.exp2(2),4.0) |
|
|
|
def test_expm1(self): |
|
assert_equal(cephes.expm1(0),0.0) |
|
assert_equal(cephes.expm1(np.inf), np.inf) |
|
assert_equal(cephes.expm1(-np.inf), -1) |
|
assert_equal(cephes.expm1(np.nan), np.nan) |
|
|
|
def test_expm1_complex(self): |
|
expm1 = cephes.expm1 |
|
assert_equal(expm1(0 + 0j), 0 + 0j) |
|
assert_equal(expm1(complex(np.inf, 0)), complex(np.inf, 0)) |
|
assert_equal(expm1(complex(np.inf, 1)), complex(np.inf, np.inf)) |
|
assert_equal(expm1(complex(np.inf, 2)), complex(-np.inf, np.inf)) |
|
assert_equal(expm1(complex(np.inf, 4)), complex(-np.inf, -np.inf)) |
|
assert_equal(expm1(complex(np.inf, 5)), complex(np.inf, -np.inf)) |
|
assert_equal(expm1(complex(1, np.inf)), complex(np.nan, np.nan)) |
|
assert_equal(expm1(complex(0, np.inf)), complex(np.nan, np.nan)) |
|
assert_equal(expm1(complex(np.inf, np.inf)), complex(np.inf, np.nan)) |
|
assert_equal(expm1(complex(-np.inf, np.inf)), complex(-1, 0)) |
|
assert_equal(expm1(complex(-np.inf, np.nan)), complex(-1, 0)) |
|
assert_equal(expm1(complex(np.inf, np.nan)), complex(np.inf, np.nan)) |
|
assert_equal(expm1(complex(0, np.nan)), complex(np.nan, np.nan)) |
|
assert_equal(expm1(complex(1, np.nan)), complex(np.nan, np.nan)) |
|
assert_equal(expm1(complex(np.nan, 1)), complex(np.nan, np.nan)) |
|
assert_equal(expm1(complex(np.nan, np.nan)), complex(np.nan, np.nan)) |
|
|
|
@pytest.mark.xfail(reason='The real part of expm1(z) bad at these points') |
|
def test_expm1_complex_hard(self): |
|
|
|
|
|
y = np.array([0.1, 0.2, 0.3, 5, 11, 20]) |
|
x = -np.log(np.cos(y)) |
|
z = x + 1j*y |
|
|
|
|
|
expected = np.array([-5.5507901846769623e-17+0.10033467208545054j, |
|
2.4289354732893695e-18+0.20271003550867248j, |
|
4.5235500262585768e-17+0.30933624960962319j, |
|
7.8234305217489006e-17-3.3805150062465863j, |
|
-1.3685191953697676e-16-225.95084645419513j, |
|
8.7175620481291045e-17+2.2371609442247422j]) |
|
found = cephes.expm1(z) |
|
|
|
assert_array_almost_equal_nulp(found.imag, expected.imag, 3) |
|
|
|
assert_array_almost_equal_nulp(found.real, expected.real, 20) |
|
|
|
def test_fdtr(self): |
|
assert_equal(cephes.fdtr(1, 1, 0), 0.0) |
|
|
|
assert_allclose(cephes.fdtr(1e-6, 5, 10), 0.9999940790193488, |
|
rtol=1e-12) |
|
|
|
def test_fdtrc(self): |
|
assert_equal(cephes.fdtrc(1, 1, 0), 1.0) |
|
|
|
|
|
assert_allclose(cephes.fdtrc(2, 0.1, 1e10), 0.27223784621293512, |
|
rtol=1e-12) |
|
|
|
def test_fdtri(self): |
|
assert_allclose(cephes.fdtri(1, 1, [0.499, 0.501]), |
|
array([0.9937365, 1.00630298]), rtol=1e-6) |
|
|
|
|
|
p = 0.8756751669632105666874 |
|
assert_allclose(cephes.fdtri(0.1, 1, p), 3, rtol=1e-12) |
|
|
|
@pytest.mark.xfail(reason='Returns nan on i686.') |
|
def test_fdtri_mysterious_failure(self): |
|
assert_allclose(cephes.fdtri(1, 1, 0.5), 1) |
|
|
|
def test_fdtridfd(self): |
|
assert_equal(cephes.fdtridfd(1,0,0),5.0) |
|
|
|
def test_fresnel(self): |
|
assert_equal(cephes.fresnel(0),(0.0,0.0)) |
|
|
|
def test_gamma(self): |
|
assert_equal(cephes.gamma(5),24.0) |
|
|
|
def test_gammainccinv(self): |
|
assert_equal(cephes.gammainccinv(5,1),0.0) |
|
|
|
def test_gammaln(self): |
|
cephes.gammaln(10) |
|
|
|
def test_gammasgn(self): |
|
vals = np.array( |
|
[-np.inf, -4, -3.5, -2.3, -0.0, 0.0, 1, 4.2, np.inf], np.float64 |
|
) |
|
reference = np.array( |
|
[np.nan, np.nan, 1.0, -1.0, -1.0, 1.0, 1.0, 1.0, 1.0], np.float64 |
|
) |
|
assert_array_equal(cephes.gammasgn(vals), reference) |
|
|
|
def test_gdtr(self): |
|
assert_equal(cephes.gdtr(1,1,0),0.0) |
|
|
|
def test_gdtr_inf(self): |
|
assert_equal(cephes.gdtr(1,1,np.inf),1.0) |
|
|
|
def test_gdtrc(self): |
|
assert_equal(cephes.gdtrc(1,1,0),1.0) |
|
|
|
def test_gdtria(self): |
|
assert_equal(cephes.gdtria(0,1,1),0.0) |
|
|
|
def test_gdtrib(self): |
|
cephes.gdtrib(1,0,1) |
|
|
|
|
|
def test_gdtrix(self): |
|
cephes.gdtrix(1,1,.1) |
|
|
|
def test_hankel1(self): |
|
cephes.hankel1(1,1) |
|
|
|
def test_hankel1e(self): |
|
cephes.hankel1e(1,1) |
|
|
|
def test_hankel2(self): |
|
cephes.hankel2(1,1) |
|
|
|
def test_hankel2e(self): |
|
cephes.hankel2e(1,1) |
|
|
|
def test_hyp1f1(self): |
|
assert_approx_equal(cephes.hyp1f1(1,1,1), exp(1.0)) |
|
assert_approx_equal(cephes.hyp1f1(3,4,-6), 0.026056422099537251095) |
|
cephes.hyp1f1(1,1,1) |
|
|
|
def test_hyp2f1(self): |
|
assert_equal(cephes.hyp2f1(1,1,1,0),1.0) |
|
|
|
def test_i0(self): |
|
assert_equal(cephes.i0(0),1.0) |
|
|
|
def test_i0e(self): |
|
assert_equal(cephes.i0e(0),1.0) |
|
|
|
def test_i1(self): |
|
assert_equal(cephes.i1(0),0.0) |
|
|
|
def test_i1e(self): |
|
assert_equal(cephes.i1e(0),0.0) |
|
|
|
def test_it2i0k0(self): |
|
cephes.it2i0k0(1) |
|
|
|
def test_it2j0y0(self): |
|
cephes.it2j0y0(1) |
|
|
|
def test_it2struve0(self): |
|
cephes.it2struve0(1) |
|
|
|
def test_itairy(self): |
|
cephes.itairy(1) |
|
|
|
def test_iti0k0(self): |
|
assert_equal(cephes.iti0k0(0),(0.0,0.0)) |
|
|
|
def test_itj0y0(self): |
|
assert_equal(cephes.itj0y0(0),(0.0,0.0)) |
|
|
|
def test_itmodstruve0(self): |
|
assert_equal(cephes.itmodstruve0(0),0.0) |
|
|
|
def test_itstruve0(self): |
|
assert_equal(cephes.itstruve0(0),0.0) |
|
|
|
def test_iv(self): |
|
assert_equal(cephes.iv(1,0),0.0) |
|
|
|
def test_ive(self): |
|
assert_equal(cephes.ive(1,0),0.0) |
|
|
|
def test_j0(self): |
|
assert_equal(cephes.j0(0),1.0) |
|
|
|
def test_j1(self): |
|
assert_equal(cephes.j1(0),0.0) |
|
|
|
def test_jn(self): |
|
assert_equal(cephes.jn(0,0),1.0) |
|
|
|
def test_jv(self): |
|
assert_equal(cephes.jv(0,0),1.0) |
|
|
|
def test_jve(self): |
|
assert_equal(cephes.jve(0,0),1.0) |
|
|
|
def test_k0(self): |
|
cephes.k0(2) |
|
|
|
def test_k0e(self): |
|
cephes.k0e(2) |
|
|
|
def test_k1(self): |
|
cephes.k1(2) |
|
|
|
def test_k1e(self): |
|
cephes.k1e(2) |
|
|
|
def test_kei(self): |
|
cephes.kei(2) |
|
|
|
def test_keip(self): |
|
assert_equal(cephes.keip(0),0.0) |
|
|
|
def test_ker(self): |
|
cephes.ker(2) |
|
|
|
def test_kerp(self): |
|
cephes.kerp(2) |
|
|
|
def test_kelvin(self): |
|
cephes.kelvin(2) |
|
|
|
def test_kn(self): |
|
cephes.kn(1,1) |
|
|
|
def test_kolmogi(self): |
|
assert_equal(cephes.kolmogi(1),0.0) |
|
assert_(np.isnan(cephes.kolmogi(np.nan))) |
|
|
|
def test_kolmogorov(self): |
|
assert_equal(cephes.kolmogorov(0), 1.0) |
|
|
|
def test_kolmogp(self): |
|
assert_equal(cephes._kolmogp(0), -0.0) |
|
|
|
def test_kolmogc(self): |
|
assert_equal(cephes._kolmogc(0), 0.0) |
|
|
|
def test_kolmogci(self): |
|
assert_equal(cephes._kolmogci(0), 0.0) |
|
assert_(np.isnan(cephes._kolmogci(np.nan))) |
|
|
|
def test_kv(self): |
|
cephes.kv(1,1) |
|
|
|
def test_kve(self): |
|
cephes.kve(1,1) |
|
|
|
def test_log1p(self): |
|
log1p = cephes.log1p |
|
assert_equal(log1p(0), 0.0) |
|
assert_equal(log1p(-1), -np.inf) |
|
assert_equal(log1p(-2), np.nan) |
|
assert_equal(log1p(np.inf), np.inf) |
|
|
|
def test_log1p_complex(self): |
|
log1p = cephes.log1p |
|
c = complex |
|
assert_equal(log1p(0 + 0j), 0 + 0j) |
|
assert_equal(log1p(c(-1, 0)), c(-np.inf, 0)) |
|
with suppress_warnings() as sup: |
|
sup.filter(RuntimeWarning, "invalid value encountered in multiply") |
|
assert_allclose(log1p(c(1, np.inf)), c(np.inf, np.pi/2)) |
|
assert_equal(log1p(c(1, np.nan)), c(np.nan, np.nan)) |
|
assert_allclose(log1p(c(-np.inf, 1)), c(np.inf, np.pi)) |
|
assert_equal(log1p(c(np.inf, 1)), c(np.inf, 0)) |
|
assert_allclose(log1p(c(-np.inf, np.inf)), c(np.inf, 3*np.pi/4)) |
|
assert_allclose(log1p(c(np.inf, np.inf)), c(np.inf, np.pi/4)) |
|
assert_equal(log1p(c(np.inf, np.nan)), c(np.inf, np.nan)) |
|
assert_equal(log1p(c(-np.inf, np.nan)), c(np.inf, np.nan)) |
|
assert_equal(log1p(c(np.nan, np.inf)), c(np.inf, np.nan)) |
|
assert_equal(log1p(c(np.nan, 1)), c(np.nan, np.nan)) |
|
assert_equal(log1p(c(np.nan, np.nan)), c(np.nan, np.nan)) |
|
|
|
def test_lpmv(self): |
|
assert_equal(cephes.lpmv(0,0,1),1.0) |
|
|
|
def test_mathieu_a(self): |
|
assert_equal(cephes.mathieu_a(1,0),1.0) |
|
|
|
def test_mathieu_b(self): |
|
assert_equal(cephes.mathieu_b(1,0),1.0) |
|
|
|
def test_mathieu_cem(self): |
|
assert_equal(cephes.mathieu_cem(1,0,0),(1.0,0.0)) |
|
|
|
|
|
@np.vectorize |
|
def ce_smallq(m, q, z): |
|
z *= np.pi/180 |
|
if m == 0: |
|
|
|
return 2**(-0.5) * (1 - .5*q*cos(2*z)) |
|
elif m == 1: |
|
|
|
return cos(z) - q/8 * cos(3*z) |
|
elif m == 2: |
|
|
|
return cos(2*z) - q*(cos(4*z)/12 - 1/4) |
|
else: |
|
|
|
return cos(m*z) - q*(cos((m+2)*z)/(4*(m+1)) - cos((m-2)*z)/(4*(m-1))) |
|
m = np.arange(0, 100) |
|
q = np.r_[0, np.logspace(-30, -9, 10)] |
|
assert_allclose(cephes.mathieu_cem(m[:,None], q[None,:], 0.123)[0], |
|
ce_smallq(m[:,None], q[None,:], 0.123), |
|
rtol=1e-14, atol=0) |
|
|
|
def test_mathieu_sem(self): |
|
assert_equal(cephes.mathieu_sem(1,0,0),(0.0,1.0)) |
|
|
|
|
|
@np.vectorize |
|
def se_smallq(m, q, z): |
|
z *= np.pi/180 |
|
if m == 1: |
|
|
|
return sin(z) - q/8 * sin(3*z) |
|
elif m == 2: |
|
|
|
return sin(2*z) - q*sin(4*z)/12 |
|
else: |
|
|
|
return sin(m*z) - q*(sin((m+2)*z)/(4*(m+1)) - sin((m-2)*z)/(4*(m-1))) |
|
m = np.arange(1, 100) |
|
q = np.r_[0, np.logspace(-30, -9, 10)] |
|
assert_allclose(cephes.mathieu_sem(m[:,None], q[None,:], 0.123)[0], |
|
se_smallq(m[:,None], q[None,:], 0.123), |
|
rtol=1e-14, atol=0) |
|
|
|
def test_mathieu_modcem1(self): |
|
assert_equal(cephes.mathieu_modcem1(1,0,0),(0.0,0.0)) |
|
|
|
def test_mathieu_modcem2(self): |
|
cephes.mathieu_modcem2(1,1,1) |
|
|
|
|
|
m = np.arange(0, 4)[:,None,None] |
|
q = np.r_[np.logspace(-2, 2, 10)][None,:,None] |
|
z = np.linspace(0, 1, 7)[None,None,:] |
|
|
|
y1 = cephes.mathieu_modcem2(m, q, -z)[0] |
|
|
|
fr = -cephes.mathieu_modcem2(m, q, 0)[0] / cephes.mathieu_modcem1(m, q, 0)[0] |
|
y2 = (-cephes.mathieu_modcem2(m, q, z)[0] |
|
- 2*fr*cephes.mathieu_modcem1(m, q, z)[0]) |
|
|
|
assert_allclose(y1, y2, rtol=1e-10) |
|
|
|
def test_mathieu_modsem1(self): |
|
assert_equal(cephes.mathieu_modsem1(1,0,0),(0.0,0.0)) |
|
|
|
def test_mathieu_modsem2(self): |
|
cephes.mathieu_modsem2(1,1,1) |
|
|
|
|
|
m = np.arange(1, 4)[:,None,None] |
|
q = np.r_[np.logspace(-2, 2, 10)][None,:,None] |
|
z = np.linspace(0, 1, 7)[None,None,:] |
|
|
|
y1 = cephes.mathieu_modsem2(m, q, -z)[0] |
|
fr = cephes.mathieu_modsem2(m, q, 0)[1] / cephes.mathieu_modsem1(m, q, 0)[1] |
|
y2 = (cephes.mathieu_modsem2(m, q, z)[0] |
|
- 2*fr*cephes.mathieu_modsem1(m, q, z)[0]) |
|
assert_allclose(y1, y2, rtol=1e-10) |
|
|
|
def test_mathieu_overflow(self): |
|
|
|
assert_equal(cephes.mathieu_cem(10000, 0, 1.3), (np.nan, np.nan)) |
|
assert_equal(cephes.mathieu_sem(10000, 0, 1.3), (np.nan, np.nan)) |
|
assert_equal(cephes.mathieu_cem(10000, 1.5, 1.3), (np.nan, np.nan)) |
|
assert_equal(cephes.mathieu_sem(10000, 1.5, 1.3), (np.nan, np.nan)) |
|
assert_equal(cephes.mathieu_modcem1(10000, 1.5, 1.3), (np.nan, np.nan)) |
|
assert_equal(cephes.mathieu_modsem1(10000, 1.5, 1.3), (np.nan, np.nan)) |
|
assert_equal(cephes.mathieu_modcem2(10000, 1.5, 1.3), (np.nan, np.nan)) |
|
assert_equal(cephes.mathieu_modsem2(10000, 1.5, 1.3), (np.nan, np.nan)) |
|
|
|
def test_mathieu_ticket_1847(self): |
|
|
|
|
|
for k in range(60): |
|
v = cephes.mathieu_modsem2(2, 100, -1) |
|
|
|
assert_allclose(v[0], 0.1431742913063671074347, rtol=1e-10) |
|
assert_allclose(v[1], 0.9017807375832909144719, rtol=1e-4) |
|
|
|
def test_modfresnelm(self): |
|
cephes.modfresnelm(0) |
|
|
|
def test_modfresnelp(self): |
|
cephes.modfresnelp(0) |
|
|
|
def test_modstruve(self): |
|
assert_equal(cephes.modstruve(1,0),0.0) |
|
|
|
def test_nbdtr(self): |
|
assert_equal(cephes.nbdtr(1,1,1),1.0) |
|
|
|
def test_nbdtrc(self): |
|
assert_equal(cephes.nbdtrc(1,1,1),0.0) |
|
|
|
def test_nbdtri(self): |
|
assert_equal(cephes.nbdtri(1,1,1),1.0) |
|
|
|
def test_nbdtrik(self): |
|
cephes.nbdtrik(1,.4,.5) |
|
|
|
def test_nbdtrin(self): |
|
assert_equal(cephes.nbdtrin(1,0,0),5.0) |
|
|
|
def test_ncfdtr(self): |
|
assert_equal(cephes.ncfdtr(1,1,1,0),0.0) |
|
|
|
def test_ncfdtri(self): |
|
assert_equal(cephes.ncfdtri(1, 1, 1, 0), 0.0) |
|
f = [0.5, 1, 1.5] |
|
p = cephes.ncfdtr(2, 3, 1.5, f) |
|
assert_allclose(cephes.ncfdtri(2, 3, 1.5, p), f) |
|
|
|
@pytest.mark.xfail( |
|
reason=( |
|
"ncfdtr uses a Boost math implementation but ncfdtridfd" |
|
"inverts the less accurate cdflib implementation of ncfdtr." |
|
) |
|
) |
|
def test_ncfdtridfd(self): |
|
dfd = [1, 2, 3] |
|
p = cephes.ncfdtr(2, dfd, 0.25, 15) |
|
assert_allclose(cephes.ncfdtridfd(2, p, 0.25, 15), dfd) |
|
|
|
@pytest.mark.xfail( |
|
reason=( |
|
"ncfdtr uses a Boost math implementation but ncfdtridfn" |
|
"inverts the less accurate cdflib implementation of ncfdtr." |
|
) |
|
) |
|
def test_ncfdtridfn(self): |
|
dfn = [0.1, 1, 2, 3, 1e4] |
|
p = cephes.ncfdtr(dfn, 2, 0.25, 15) |
|
assert_allclose(cephes.ncfdtridfn(p, 2, 0.25, 15), dfn, rtol=1e-5) |
|
|
|
@pytest.mark.xfail( |
|
reason=( |
|
"ncfdtr uses a Boost math implementation but ncfdtrinc" |
|
"inverts the less accurate cdflib implementation of ncfdtr." |
|
) |
|
) |
|
def test_ncfdtrinc(self): |
|
nc = [0.5, 1.5, 2.0] |
|
p = cephes.ncfdtr(2, 3, nc, 15) |
|
assert_allclose(cephes.ncfdtrinc(2, 3, p, 15), nc) |
|
|
|
def test_nctdtr(self): |
|
assert_equal(cephes.nctdtr(1,0,0),0.5) |
|
assert_equal(cephes.nctdtr(9, 65536, 45), 0.0) |
|
|
|
assert_approx_equal(cephes.nctdtr(np.inf, 1., 1.), 0.5, 5) |
|
assert_(np.isnan(cephes.nctdtr(2., np.inf, 10.))) |
|
assert_approx_equal(cephes.nctdtr(2., 1., np.inf), 1.) |
|
|
|
assert_(np.isnan(cephes.nctdtr(np.nan, 1., 1.))) |
|
assert_(np.isnan(cephes.nctdtr(2., np.nan, 1.))) |
|
assert_(np.isnan(cephes.nctdtr(2., 1., np.nan))) |
|
|
|
def test_nctdtridf(self): |
|
cephes.nctdtridf(1,0.5,0) |
|
|
|
def test_nctdtrinc(self): |
|
cephes.nctdtrinc(1,0,0) |
|
|
|
def test_nctdtrit(self): |
|
cephes.nctdtrit(.1,0.2,.5) |
|
|
|
def test_nrdtrimn(self): |
|
assert_approx_equal(cephes.nrdtrimn(0.5,1,1),1.0) |
|
|
|
def test_nrdtrisd(self): |
|
assert_allclose(cephes.nrdtrisd(0.5,0.5,0.5), 0.0, |
|
atol=0, rtol=0) |
|
|
|
def test_obl_ang1(self): |
|
cephes.obl_ang1(1,1,1,0) |
|
|
|
def test_obl_ang1_cv(self): |
|
result = cephes.obl_ang1_cv(1,1,1,1,0) |
|
assert_almost_equal(result[0],1.0) |
|
assert_almost_equal(result[1],0.0) |
|
|
|
def test_obl_cv(self): |
|
assert_equal(cephes.obl_cv(1,1,0),2.0) |
|
|
|
def test_obl_rad1(self): |
|
cephes.obl_rad1(1,1,1,0) |
|
|
|
def test_obl_rad1_cv(self): |
|
cephes.obl_rad1_cv(1,1,1,1,0) |
|
|
|
def test_obl_rad2(self): |
|
cephes.obl_rad2(1,1,1,0) |
|
|
|
def test_obl_rad2_cv(self): |
|
cephes.obl_rad2_cv(1,1,1,1,0) |
|
|
|
def test_pbdv(self): |
|
assert_equal(cephes.pbdv(1,0),(0.0,1.0)) |
|
|
|
def test_pbvv(self): |
|
cephes.pbvv(1,0) |
|
|
|
def test_pbwa(self): |
|
cephes.pbwa(1,0) |
|
|
|
def test_pdtr(self): |
|
val = cephes.pdtr(0, 1) |
|
assert_almost_equal(val, np.exp(-1)) |
|
|
|
val = cephes.pdtr([0, 1, 2], 0) |
|
assert_array_equal(val, [1, 1, 1]) |
|
|
|
def test_pdtrc(self): |
|
val = cephes.pdtrc(0, 1) |
|
assert_almost_equal(val, 1 - np.exp(-1)) |
|
|
|
val = cephes.pdtrc([0, 1, 2], 0.0) |
|
assert_array_equal(val, [0, 0, 0]) |
|
|
|
def test_pdtri(self): |
|
with suppress_warnings() as sup: |
|
sup.filter(RuntimeWarning, "floating point number truncated to an integer") |
|
cephes.pdtri(0.5,0.5) |
|
|
|
def test_pdtrik(self): |
|
k = cephes.pdtrik(0.5, 1) |
|
assert_almost_equal(cephes.gammaincc(k + 1, 1), 0.5) |
|
|
|
k = cephes.pdtrik([[0], [0.25], [0.95]], [0, 1e-20, 1e-6]) |
|
assert_array_equal(k, np.zeros((3, 3))) |
|
|
|
def test_pro_ang1(self): |
|
cephes.pro_ang1(1,1,1,0) |
|
|
|
def test_pro_ang1_cv(self): |
|
assert_array_almost_equal(cephes.pro_ang1_cv(1,1,1,1,0), |
|
array((1.0,0.0))) |
|
|
|
def test_pro_cv(self): |
|
assert_equal(cephes.pro_cv(1,1,0),2.0) |
|
|
|
def test_pro_rad1(self): |
|
cephes.pro_rad1(1,1,1,0.1) |
|
|
|
def test_pro_rad1_cv(self): |
|
cephes.pro_rad1_cv(1,1,1,1,0) |
|
|
|
def test_pro_rad2(self): |
|
cephes.pro_rad2(1,1,1,0) |
|
|
|
def test_pro_rad2_cv(self): |
|
cephes.pro_rad2_cv(1,1,1,1,0) |
|
|
|
def test_psi(self): |
|
cephes.psi(1) |
|
|
|
def test_radian(self): |
|
assert_equal(cephes.radian(0,0,0),0) |
|
|
|
def test_rgamma(self): |
|
assert_equal(cephes.rgamma(1),1.0) |
|
|
|
def test_round(self): |
|
assert_equal(cephes.round(3.4),3.0) |
|
assert_equal(cephes.round(-3.4),-3.0) |
|
assert_equal(cephes.round(3.6),4.0) |
|
assert_equal(cephes.round(-3.6),-4.0) |
|
assert_equal(cephes.round(3.5),4.0) |
|
assert_equal(cephes.round(-3.5),-4.0) |
|
|
|
def test_shichi(self): |
|
cephes.shichi(1) |
|
|
|
def test_sici(self): |
|
cephes.sici(1) |
|
|
|
s, c = cephes.sici(np.inf) |
|
assert_almost_equal(s, np.pi * 0.5) |
|
assert_almost_equal(c, 0) |
|
|
|
s, c = cephes.sici(-np.inf) |
|
assert_almost_equal(s, -np.pi * 0.5) |
|
assert_(np.isnan(c), "cosine integral(-inf) is not nan") |
|
|
|
def test_sindg(self): |
|
assert_equal(cephes.sindg(90),1.0) |
|
|
|
def test_smirnov(self): |
|
assert_equal(cephes.smirnov(1,.1),0.9) |
|
assert_(np.isnan(cephes.smirnov(1,np.nan))) |
|
|
|
def test_smirnovp(self): |
|
assert_equal(cephes._smirnovp(1, .1), -1) |
|
assert_equal(cephes._smirnovp(2, 0.75), -2*(0.25)**(2-1)) |
|
assert_equal(cephes._smirnovp(3, 0.75), -3*(0.25)**(3-1)) |
|
assert_(np.isnan(cephes._smirnovp(1, np.nan))) |
|
|
|
def test_smirnovc(self): |
|
assert_equal(cephes._smirnovc(1,.1),0.1) |
|
assert_(np.isnan(cephes._smirnovc(1,np.nan))) |
|
x10 = np.linspace(0, 1, 11, endpoint=True) |
|
assert_almost_equal(cephes._smirnovc(3, x10), 1-cephes.smirnov(3, x10)) |
|
x4 = np.linspace(0, 1, 5, endpoint=True) |
|
assert_almost_equal(cephes._smirnovc(4, x4), 1-cephes.smirnov(4, x4)) |
|
|
|
def test_smirnovi(self): |
|
assert_almost_equal(cephes.smirnov(1,cephes.smirnovi(1,0.4)),0.4) |
|
assert_almost_equal(cephes.smirnov(1,cephes.smirnovi(1,0.6)),0.6) |
|
assert_(np.isnan(cephes.smirnovi(1,np.nan))) |
|
|
|
def test_smirnovci(self): |
|
assert_almost_equal(cephes._smirnovc(1,cephes._smirnovci(1,0.4)),0.4) |
|
assert_almost_equal(cephes._smirnovc(1,cephes._smirnovci(1,0.6)),0.6) |
|
assert_(np.isnan(cephes._smirnovci(1,np.nan))) |
|
|
|
def test_spence(self): |
|
assert_equal(cephes.spence(1),0.0) |
|
|
|
def test_stdtr(self): |
|
assert_equal(cephes.stdtr(1,0),0.5) |
|
assert_almost_equal(cephes.stdtr(1,1), 0.75) |
|
assert_almost_equal(cephes.stdtr(1,2), 0.852416382349) |
|
|
|
def test_stdtridf(self): |
|
cephes.stdtridf(0.7,1) |
|
|
|
def test_stdtrit(self): |
|
cephes.stdtrit(1,0.7) |
|
|
|
def test_struve(self): |
|
assert_equal(cephes.struve(0,0),0.0) |
|
|
|
def test_tandg(self): |
|
assert_equal(cephes.tandg(45),1.0) |
|
|
|
def test_tklmbda(self): |
|
assert_almost_equal(cephes.tklmbda(1,1),1.0) |
|
|
|
def test_y0(self): |
|
cephes.y0(1) |
|
|
|
def test_y1(self): |
|
cephes.y1(1) |
|
|
|
def test_yn(self): |
|
cephes.yn(1,1) |
|
|
|
def test_yv(self): |
|
cephes.yv(1,1) |
|
|
|
def test_yve(self): |
|
cephes.yve(1,1) |
|
|
|
def test_wofz(self): |
|
z = [complex(624.2,-0.26123), complex(-0.4,3.), complex(0.6,2.), |
|
complex(-1.,1.), complex(-1.,-9.), complex(-1.,9.), |
|
complex(-0.0000000234545,1.1234), complex(-3.,5.1), |
|
complex(-53,30.1), complex(0.0,0.12345), |
|
complex(11,1), complex(-22,-2), complex(9,-28), |
|
complex(21,-33), complex(1e5,1e5), complex(1e14,1e14) |
|
] |
|
w = [ |
|
complex(-3.78270245518980507452677445620103199303131110e-7, |
|
0.000903861276433172057331093754199933411710053155), |
|
complex(0.1764906227004816847297495349730234591778719532788, |
|
-0.02146550539468457616788719893991501311573031095617), |
|
complex(0.2410250715772692146133539023007113781272362309451, |
|
0.06087579663428089745895459735240964093522265589350), |
|
complex(0.30474420525691259245713884106959496013413834051768, |
|
-0.20821893820283162728743734725471561394145872072738), |
|
complex(7.317131068972378096865595229600561710140617977e34, |
|
8.321873499714402777186848353320412813066170427e34), |
|
complex(0.0615698507236323685519612934241429530190806818395, |
|
-0.00676005783716575013073036218018565206070072304635), |
|
complex(0.3960793007699874918961319170187598400134746631, |
|
-5.593152259116644920546186222529802777409274656e-9), |
|
complex(0.08217199226739447943295069917990417630675021771804, |
|
-0.04701291087643609891018366143118110965272615832184), |
|
complex(0.00457246000350281640952328010227885008541748668738, |
|
-0.00804900791411691821818731763401840373998654987934), |
|
complex(0.8746342859608052666092782112565360755791467973338452, |
|
0.), |
|
complex(0.00468190164965444174367477874864366058339647648741, |
|
0.0510735563901306197993676329845149741675029197050), |
|
complex(-0.0023193175200187620902125853834909543869428763219, |
|
-0.025460054739731556004902057663500272721780776336), |
|
complex(9.11463368405637174660562096516414499772662584e304, |
|
3.97101807145263333769664875189354358563218932e305), |
|
complex(-4.4927207857715598976165541011143706155432296e281, |
|
-2.8019591213423077494444700357168707775769028e281), |
|
complex(2.820947917809305132678577516325951485807107151e-6, |
|
2.820947917668257736791638444590253942253354058e-6), |
|
complex(2.82094791773878143474039725787438662716372268e-15, |
|
2.82094791773878143474039725773333923127678361e-15) |
|
] |
|
assert_func_equal(cephes.wofz, w, z, rtol=1e-13) |
|
|
|
|
|
class TestAiry: |
|
def test_airy(self): |
|
|
|
|
|
x = special.airy(.99) |
|
assert_array_almost_equal( |
|
x, |
|
array([0.13689066,-0.16050153,1.19815925,0.92046818]), |
|
8, |
|
) |
|
x = special.airy(.41) |
|
assert_array_almost_equal( |
|
x, |
|
array([0.25238916,-.23480512,0.80686202,0.51053919]), |
|
8, |
|
) |
|
x = special.airy(-.36) |
|
assert_array_almost_equal( |
|
x, |
|
array([0.44508477,-0.23186773,0.44939534,0.48105354]), |
|
8, |
|
) |
|
|
|
def test_airye(self): |
|
a = special.airye(0.01) |
|
b = special.airy(0.01) |
|
b1 = [None]*4 |
|
for n in range(2): |
|
b1[n] = b[n]*exp(2.0/3.0*0.01*sqrt(0.01)) |
|
for n in range(2,4): |
|
b1[n] = b[n]*exp(-abs(real(2.0/3.0*0.01*sqrt(0.01)))) |
|
assert_array_almost_equal(a,b1,6) |
|
|
|
def test_bi_zeros(self): |
|
bi = special.bi_zeros(2) |
|
bia = (array([-1.17371322, -3.2710930]), |
|
array([-2.29443968, -4.07315509]), |
|
array([-0.45494438, 0.39652284]), |
|
array([0.60195789, -0.76031014])) |
|
assert_array_almost_equal(bi,bia,4) |
|
|
|
bi = special.bi_zeros(5) |
|
assert_array_almost_equal(bi[0],array([-1.173713222709127, |
|
-3.271093302836352, |
|
-4.830737841662016, |
|
-6.169852128310251, |
|
-7.376762079367764]),11) |
|
|
|
assert_array_almost_equal(bi[1],array([-2.294439682614122, |
|
-4.073155089071828, |
|
-5.512395729663599, |
|
-6.781294445990305, |
|
-7.940178689168587]),10) |
|
|
|
assert_array_almost_equal(bi[2],array([-0.454944383639657, |
|
0.396522836094465, |
|
-0.367969161486959, |
|
0.349499116831805, |
|
-0.336026240133662]),11) |
|
|
|
assert_array_almost_equal(bi[3],array([0.601957887976239, |
|
-0.760310141492801, |
|
0.836991012619261, |
|
-0.88947990142654, |
|
0.929983638568022]),10) |
|
|
|
def test_ai_zeros(self): |
|
ai = special.ai_zeros(1) |
|
assert_array_almost_equal(ai,(array([-2.33810741]), |
|
array([-1.01879297]), |
|
array([0.5357]), |
|
array([0.7012])),4) |
|
|
|
@pytest.mark.fail_slow(5) |
|
def test_ai_zeros_big(self): |
|
z, zp, ai_zpx, aip_zx = special.ai_zeros(50000) |
|
ai_z, aip_z, _, _ = special.airy(z) |
|
ai_zp, aip_zp, _, _ = special.airy(zp) |
|
|
|
ai_envelope = 1/abs(z)**(1./4) |
|
aip_envelope = abs(zp)**(1./4) |
|
|
|
|
|
assert_allclose(ai_zpx, ai_zp, rtol=1e-10) |
|
assert_allclose(aip_zx, aip_z, rtol=1e-10) |
|
|
|
|
|
assert_allclose(ai_z/ai_envelope, 0, atol=1e-10, rtol=0) |
|
assert_allclose(aip_zp/aip_envelope, 0, atol=1e-10, rtol=0) |
|
|
|
|
|
assert_allclose(z[:6], |
|
[-2.3381074105, -4.0879494441, -5.5205598281, |
|
-6.7867080901, -7.9441335871, -9.0226508533], rtol=1e-10) |
|
assert_allclose(zp[:6], |
|
[-1.0187929716, -3.2481975822, -4.8200992112, |
|
-6.1633073556, -7.3721772550, -8.4884867340], rtol=1e-10) |
|
|
|
@pytest.mark.fail_slow(5) |
|
def test_bi_zeros_big(self): |
|
z, zp, bi_zpx, bip_zx = special.bi_zeros(50000) |
|
_, _, bi_z, bip_z = special.airy(z) |
|
_, _, bi_zp, bip_zp = special.airy(zp) |
|
|
|
bi_envelope = 1/abs(z)**(1./4) |
|
bip_envelope = abs(zp)**(1./4) |
|
|
|
|
|
assert_allclose(bi_zpx, bi_zp, rtol=1e-10) |
|
assert_allclose(bip_zx, bip_z, rtol=1e-10) |
|
|
|
|
|
assert_allclose(bi_z/bi_envelope, 0, atol=1e-10, rtol=0) |
|
assert_allclose(bip_zp/bip_envelope, 0, atol=1e-10, rtol=0) |
|
|
|
|
|
assert_allclose(z[:6], |
|
[-1.1737132227, -3.2710933028, -4.8307378417, |
|
-6.1698521283, -7.3767620794, -8.4919488465], rtol=1e-10) |
|
assert_allclose(zp[:6], |
|
[-2.2944396826, -4.0731550891, -5.5123957297, |
|
-6.7812944460, -7.9401786892, -9.0195833588], rtol=1e-10) |
|
|
|
|
|
class TestAssocLaguerre: |
|
def test_assoc_laguerre(self): |
|
a1 = special.genlaguerre(11,1) |
|
a2 = special.assoc_laguerre(.2,11,1) |
|
assert_array_almost_equal(a2,a1(.2),8) |
|
a2 = special.assoc_laguerre(1,11,1) |
|
assert_array_almost_equal(a2,a1(1),8) |
|
|
|
|
|
class TestBesselpoly: |
|
def test_besselpoly(self): |
|
pass |
|
|
|
|
|
class TestKelvin: |
|
def test_bei(self): |
|
mbei = special.bei(2) |
|
assert_almost_equal(mbei, 0.9722916273066613,5) |
|
|
|
def test_beip(self): |
|
mbeip = special.beip(2) |
|
assert_almost_equal(mbeip,0.91701361338403631,5) |
|
|
|
def test_ber(self): |
|
mber = special.ber(2) |
|
assert_almost_equal(mber,0.75173418271380821,5) |
|
|
|
def test_berp(self): |
|
mberp = special.berp(2) |
|
assert_almost_equal(mberp,-0.49306712470943909,5) |
|
|
|
def test_bei_zeros(self): |
|
|
|
bi = special.bei_zeros(5) |
|
assert_array_almost_equal(bi,array([5.02622, |
|
9.45541, |
|
13.89349, |
|
18.33398, |
|
22.77544]),4) |
|
|
|
def test_beip_zeros(self): |
|
bip = special.beip_zeros(5) |
|
assert_array_almost_equal(bip,array([3.772673304934953, |
|
8.280987849760042, |
|
12.742147523633703, |
|
17.193431752512542, |
|
21.641143941167325]),8) |
|
|
|
def test_ber_zeros(self): |
|
ber = special.ber_zeros(5) |
|
assert_array_almost_equal(ber,array([2.84892, |
|
7.23883, |
|
11.67396, |
|
16.11356, |
|
20.55463]),4) |
|
|
|
def test_berp_zeros(self): |
|
brp = special.berp_zeros(5) |
|
assert_array_almost_equal(brp,array([6.03871, |
|
10.51364, |
|
14.96844, |
|
19.41758, |
|
23.86430]),4) |
|
|
|
def test_kelvin(self): |
|
mkelv = special.kelvin(2) |
|
assert_array_almost_equal(mkelv,(special.ber(2) + special.bei(2)*1j, |
|
special.ker(2) + special.kei(2)*1j, |
|
special.berp(2) + special.beip(2)*1j, |
|
special.kerp(2) + special.keip(2)*1j),8) |
|
|
|
def test_kei(self): |
|
mkei = special.kei(2) |
|
assert_almost_equal(mkei,-0.20240006776470432,5) |
|
|
|
def test_keip(self): |
|
mkeip = special.keip(2) |
|
assert_almost_equal(mkeip,0.21980790991960536,5) |
|
|
|
def test_ker(self): |
|
mker = special.ker(2) |
|
assert_almost_equal(mker,-0.041664513991509472,5) |
|
|
|
def test_kerp(self): |
|
mkerp = special.kerp(2) |
|
assert_almost_equal(mkerp,-0.10660096588105264,5) |
|
|
|
def test_kei_zeros(self): |
|
kei = special.kei_zeros(5) |
|
assert_array_almost_equal(kei,array([3.91467, |
|
8.34422, |
|
12.78256, |
|
17.22314, |
|
21.66464]),4) |
|
|
|
def test_keip_zeros(self): |
|
keip = special.keip_zeros(5) |
|
assert_array_almost_equal(keip,array([4.93181, |
|
9.40405, |
|
13.85827, |
|
18.30717, |
|
22.75379]),4) |
|
|
|
|
|
def test_kelvin_zeros(self): |
|
tmp = special.kelvin_zeros(5) |
|
berz,beiz,kerz,keiz,berpz,beipz,kerpz,keipz = tmp |
|
assert_array_almost_equal(berz,array([2.84892, |
|
7.23883, |
|
11.67396, |
|
16.11356, |
|
20.55463]),4) |
|
assert_array_almost_equal(beiz,array([5.02622, |
|
9.45541, |
|
13.89349, |
|
18.33398, |
|
22.77544]),4) |
|
assert_array_almost_equal(kerz,array([1.71854, |
|
6.12728, |
|
10.56294, |
|
15.00269, |
|
19.44382]),4) |
|
assert_array_almost_equal(keiz,array([3.91467, |
|
8.34422, |
|
12.78256, |
|
17.22314, |
|
21.66464]),4) |
|
assert_array_almost_equal(berpz,array([6.03871, |
|
10.51364, |
|
14.96844, |
|
19.41758, |
|
23.86430]),4) |
|
assert_array_almost_equal(beipz,array([3.77267, |
|
|
|
|
|
8.28099, |
|
12.74215, |
|
17.19343, |
|
21.64114]),4) |
|
assert_array_almost_equal(kerpz,array([2.66584, |
|
7.17212, |
|
11.63218, |
|
16.08312, |
|
20.53068]),4) |
|
assert_array_almost_equal(keipz,array([4.93181, |
|
9.40405, |
|
13.85827, |
|
18.30717, |
|
22.75379]),4) |
|
|
|
def test_ker_zeros(self): |
|
ker = special.ker_zeros(5) |
|
assert_array_almost_equal(ker,array([1.71854, |
|
6.12728, |
|
10.56294, |
|
15.00269, |
|
19.44381]),4) |
|
|
|
def test_kerp_zeros(self): |
|
kerp = special.kerp_zeros(5) |
|
assert_array_almost_equal(kerp,array([2.66584, |
|
7.17212, |
|
11.63218, |
|
16.08312, |
|
20.53068]),4) |
|
|
|
|
|
class TestBernoulli: |
|
def test_bernoulli(self): |
|
brn = special.bernoulli(5) |
|
assert_array_almost_equal(brn,array([1.0000, |
|
-0.5000, |
|
0.1667, |
|
0.0000, |
|
-0.0333, |
|
0.0000]),4) |
|
|
|
|
|
class TestBeta: |
|
""" |
|
Test beta and betaln. |
|
""" |
|
|
|
def test_beta(self): |
|
assert_equal(special.beta(1, 1), 1.0) |
|
assert_allclose(special.beta(-100.3, 1e-200), special.gamma(1e-200)) |
|
assert_allclose(special.beta(0.0342, 171), 24.070498359873497, |
|
rtol=1e-13, atol=0) |
|
|
|
bet = special.beta(2, 4) |
|
betg = (special.gamma(2)*special.gamma(4))/special.gamma(6) |
|
assert_allclose(bet, betg, rtol=1e-13) |
|
|
|
def test_beta_inf(self): |
|
assert_(np.isinf(special.beta(-1, 2))) |
|
|
|
def test_betaln(self): |
|
assert_equal(special.betaln(1, 1), 0.0) |
|
assert_allclose(special.betaln(-100.3, 1e-200), |
|
special.gammaln(1e-200)) |
|
assert_allclose(special.betaln(0.0342, 170), 3.1811881124242447, |
|
rtol=1e-14, atol=0) |
|
|
|
betln = special.betaln(2, 4) |
|
bet = log(abs(special.beta(2, 4))) |
|
assert_allclose(betln, bet, rtol=1e-13) |
|
|
|
|
|
class TestBetaInc: |
|
""" |
|
Tests for betainc, betaincinv, betaincc, betainccinv. |
|
""" |
|
|
|
def test_a1_b1(self): |
|
|
|
x = np.array([0, 0.25, 1]) |
|
assert_equal(special.betainc(1, 1, x), x) |
|
assert_equal(special.betaincinv(1, 1, x), x) |
|
assert_equal(special.betaincc(1, 1, x), 1 - x) |
|
assert_equal(special.betainccinv(1, 1, x), 1 - x) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize( |
|
'a, b, x, p', |
|
[(2, 4, 0.3138101704556974, 0.5), |
|
(0.0342, 171.0, 1e-10, 0.552699169018070910641), |
|
|
|
(0.0342, 171, 8.42313169354797e-21, 0.25), |
|
|
|
(0.0002742794749792665, 289206.03125, 1.639984034231756e-56, |
|
0.9688708782196045), |
|
|
|
(4, 99997, 0.0001947841578892121, 0.999995)]) |
|
def test_betainc_betaincinv(self, a, b, x, p): |
|
p1 = special.betainc(a, b, x) |
|
assert_allclose(p1, p, rtol=1e-15) |
|
x1 = special.betaincinv(a, b, p) |
|
assert_allclose(x1, x, rtol=5e-13) |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('a, b, x, p', |
|
[(2.5, 3.0, 0.25, 0.833251953125), |
|
(7.5, 13.25, 0.375, 0.43298734645560368593), |
|
(0.125, 7.5, 0.425, 0.0006688257851314237), |
|
(0.125, 18.0, 1e-6, 0.72982359145096327654), |
|
(0.125, 18.0, 0.996, 7.2745875538380150586e-46), |
|
(0.125, 24.0, 0.75, 3.70853404816862016966e-17), |
|
(16.0, 0.75, 0.99999999975, |
|
5.4408759277418629909e-07), |
|
|
|
(0.4211959643503401, 16939.046996018118, |
|
0.000815296167195521, 1e-7)]) |
|
def test_betaincc_betainccinv(self, a, b, x, p): |
|
p1 = special.betaincc(a, b, x) |
|
assert_allclose(p1, p, rtol=5e-15) |
|
x1 = special.betainccinv(a, b, p) |
|
assert_allclose(x1, x, rtol=8e-15) |
|
|
|
@pytest.mark.parametrize( |
|
'a, b, y, ref', |
|
[(14.208308325339239, 14.208308325339239, 7.703145458496392e-307, |
|
8.566004561846704e-23), |
|
(14.0, 14.5, 1e-280, 2.9343915006642424e-21), |
|
(3.5, 15.0, 4e-95, 1.3290751429289227e-28), |
|
(10.0, 1.25, 2e-234, 3.982659092143654e-24), |
|
(4.0, 99997.0, 5e-88, 3.309800566862242e-27)] |
|
) |
|
def test_betaincinv_tiny_y(self, a, b, y, ref): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x = special.betaincinv(a, b, y) |
|
assert_allclose(x, ref, rtol=1e-14) |
|
|
|
@pytest.mark.parametrize('func', [special.betainc, special.betaincinv, |
|
special.betaincc, special.betainccinv]) |
|
@pytest.mark.parametrize('args', [(-1.0, 2, 0.5), (0, 2, 0.5), |
|
(1.5, -2.0, 0.5), (1.5, 0, 0.5), |
|
(1.5, 2.0, -0.3), (1.5, 2.0, 1.1)]) |
|
def test_betainc_domain_errors(self, func, args): |
|
with special.errstate(domain='raise'): |
|
with pytest.raises(special.SpecialFunctionError, match='domain'): |
|
special.betainc(*args) |
|
|
|
@pytest.mark.parametrize('dtype', [np.float32, np.float64]) |
|
def test_gh21426(self, dtype): |
|
|
|
a = np.array([5.], dtype=dtype) |
|
x = np.array([0.5], dtype=dtype) |
|
result = special.betaincinv(a, a, x) |
|
assert_allclose(result, x, rtol=10 * np.finfo(dtype).eps) |
|
|
|
|
|
class TestCombinatorics: |
|
def test_comb(self): |
|
assert_allclose(special.comb([10, 10], [3, 4]), [120., 210.]) |
|
assert_allclose(special.comb(10, 3), 120.) |
|
assert_equal(special.comb(10, 3, exact=True), 120) |
|
assert_equal(special.comb(10, 3, exact=True, repetition=True), 220) |
|
|
|
assert_allclose([special.comb(20, k, exact=True) for k in range(21)], |
|
special.comb(20, list(range(21))), atol=1e-15) |
|
|
|
ii = np.iinfo(int).max + 1 |
|
assert_equal(special.comb(ii, ii-1, exact=True), ii) |
|
|
|
expected = 100891344545564193334812497256 |
|
assert special.comb(100, 50, exact=True) == expected |
|
|
|
def test_comb_with_np_int64(self): |
|
n = 70 |
|
k = 30 |
|
np_n = np.int64(n) |
|
np_k = np.int64(k) |
|
res_np = special.comb(np_n, np_k, exact=True) |
|
res_py = special.comb(n, k, exact=True) |
|
assert res_np == res_py |
|
|
|
def test_comb_zeros(self): |
|
assert_equal(special.comb(2, 3, exact=True), 0) |
|
assert_equal(special.comb(-1, 3, exact=True), 0) |
|
assert_equal(special.comb(2, -1, exact=True), 0) |
|
assert_equal(special.comb(2, -1, exact=False), 0) |
|
assert_allclose(special.comb([2, -1, 2, 10], [3, 3, -1, 3]), [0., 0., 0., 120.]) |
|
|
|
@pytest.mark.thread_unsafe |
|
def test_comb_exact_non_int_dep(self): |
|
msg = "`exact=True`" |
|
with pytest.deprecated_call(match=msg): |
|
special.comb(3.4, 4, exact=True) |
|
|
|
def test_perm(self): |
|
assert_allclose(special.perm([10, 10], [3, 4]), [720., 5040.]) |
|
assert_almost_equal(special.perm(10, 3), 720.) |
|
assert_equal(special.perm(10, 3, exact=True), 720) |
|
|
|
def test_perm_zeros(self): |
|
assert_equal(special.perm(2, 3, exact=True), 0) |
|
assert_equal(special.perm(-1, 3, exact=True), 0) |
|
assert_equal(special.perm(2, -1, exact=True), 0) |
|
assert_equal(special.perm(2, -1, exact=False), 0) |
|
assert_allclose(special.perm([2, -1, 2, 10], [3, 3, -1, 3]), [0., 0., 0., 720.]) |
|
|
|
@pytest.mark.thread_unsafe |
|
def test_perm_iv(self): |
|
|
|
with pytest.raises(ValueError, match="scalar integers"): |
|
special.perm([1, 2], [4, 5], exact=True) |
|
|
|
|
|
|
|
with pytest.deprecated_call(match="Non-integer"): |
|
special.perm(4.6, 6, exact=True) |
|
with pytest.deprecated_call(match="Non-integer"): |
|
special.perm(-4.6, 3, exact=True) |
|
with pytest.deprecated_call(match="Non-integer"): |
|
special.perm(4, -3.9, exact=True) |
|
|
|
|
|
|
|
with pytest.raises(ValueError, match="Non-integer"): |
|
special.perm(6.0, 4.6, exact=True) |
|
|
|
|
|
class TestTrigonometric: |
|
def test_cbrt(self): |
|
cb = special.cbrt(27) |
|
cbrl = 27**(1.0/3.0) |
|
assert_approx_equal(cb,cbrl) |
|
|
|
def test_cbrtmore(self): |
|
cb1 = special.cbrt(27.9) |
|
cbrl1 = 27.9**(1.0/3.0) |
|
assert_almost_equal(cb1,cbrl1,8) |
|
|
|
def test_cosdg(self): |
|
cdg = special.cosdg(90) |
|
cdgrl = cos(pi/2.0) |
|
assert_almost_equal(cdg,cdgrl,8) |
|
|
|
def test_cosdgmore(self): |
|
cdgm = special.cosdg(30) |
|
cdgmrl = cos(pi/6.0) |
|
assert_almost_equal(cdgm,cdgmrl,8) |
|
|
|
def test_cosm1(self): |
|
cs = (special.cosm1(0),special.cosm1(.3),special.cosm1(pi/10)) |
|
csrl = (cos(0)-1,cos(.3)-1,cos(pi/10)-1) |
|
assert_array_almost_equal(cs,csrl,8) |
|
|
|
def test_cotdg(self): |
|
ct = special.cotdg(30) |
|
ctrl = tan(pi/6.0)**(-1) |
|
assert_almost_equal(ct,ctrl,8) |
|
|
|
def test_cotdgmore(self): |
|
ct1 = special.cotdg(45) |
|
ctrl1 = tan(pi/4.0)**(-1) |
|
assert_almost_equal(ct1,ctrl1,8) |
|
|
|
def test_specialpoints(self): |
|
assert_almost_equal(special.cotdg(45), 1.0, 14) |
|
assert_almost_equal(special.cotdg(-45), -1.0, 14) |
|
assert_almost_equal(special.cotdg(90), 0.0, 14) |
|
assert_almost_equal(special.cotdg(-90), 0.0, 14) |
|
assert_almost_equal(special.cotdg(135), -1.0, 14) |
|
assert_almost_equal(special.cotdg(-135), 1.0, 14) |
|
assert_almost_equal(special.cotdg(225), 1.0, 14) |
|
assert_almost_equal(special.cotdg(-225), -1.0, 14) |
|
assert_almost_equal(special.cotdg(270), 0.0, 14) |
|
assert_almost_equal(special.cotdg(-270), 0.0, 14) |
|
assert_almost_equal(special.cotdg(315), -1.0, 14) |
|
assert_almost_equal(special.cotdg(-315), 1.0, 14) |
|
assert_almost_equal(special.cotdg(765), 1.0, 14) |
|
|
|
def test_sinc(self): |
|
|
|
assert_array_equal(special.sinc([0]), 1) |
|
assert_equal(special.sinc(0.0), 1.0) |
|
|
|
def test_sindg(self): |
|
sn = special.sindg(90) |
|
assert_equal(sn,1.0) |
|
|
|
def test_sindgmore(self): |
|
snm = special.sindg(30) |
|
snmrl = sin(pi/6.0) |
|
assert_almost_equal(snm,snmrl,8) |
|
snm1 = special.sindg(45) |
|
snmrl1 = sin(pi/4.0) |
|
assert_almost_equal(snm1,snmrl1,8) |
|
|
|
|
|
class TestTandg: |
|
|
|
def test_tandg(self): |
|
tn = special.tandg(30) |
|
tnrl = tan(pi/6.0) |
|
assert_almost_equal(tn,tnrl,8) |
|
|
|
def test_tandgmore(self): |
|
tnm = special.tandg(45) |
|
tnmrl = tan(pi/4.0) |
|
assert_almost_equal(tnm,tnmrl,8) |
|
tnm1 = special.tandg(60) |
|
tnmrl1 = tan(pi/3.0) |
|
assert_almost_equal(tnm1,tnmrl1,8) |
|
|
|
def test_specialpoints(self): |
|
assert_almost_equal(special.tandg(0), 0.0, 14) |
|
assert_almost_equal(special.tandg(45), 1.0, 14) |
|
assert_almost_equal(special.tandg(-45), -1.0, 14) |
|
assert_almost_equal(special.tandg(135), -1.0, 14) |
|
assert_almost_equal(special.tandg(-135), 1.0, 14) |
|
assert_almost_equal(special.tandg(180), 0.0, 14) |
|
assert_almost_equal(special.tandg(-180), 0.0, 14) |
|
assert_almost_equal(special.tandg(225), 1.0, 14) |
|
assert_almost_equal(special.tandg(-225), -1.0, 14) |
|
assert_almost_equal(special.tandg(315), -1.0, 14) |
|
assert_almost_equal(special.tandg(-315), 1.0, 14) |
|
|
|
|
|
class TestEllip: |
|
def test_ellipj_nan(self): |
|
"""Regression test for #912.""" |
|
special.ellipj(0.5, np.nan) |
|
|
|
def test_ellipj(self): |
|
el = special.ellipj(0.2,0) |
|
rel = [sin(0.2),cos(0.2),1.0,0.20] |
|
assert_array_almost_equal(el,rel,13) |
|
|
|
def test_ellipk(self): |
|
elk = special.ellipk(.2) |
|
assert_almost_equal(elk,1.659623598610528,11) |
|
|
|
assert_equal(special.ellipkm1(0.0), np.inf) |
|
assert_equal(special.ellipkm1(1.0), pi/2) |
|
assert_equal(special.ellipkm1(np.inf), 0.0) |
|
assert_equal(special.ellipkm1(np.nan), np.nan) |
|
assert_equal(special.ellipkm1(-1), np.nan) |
|
assert_allclose(special.ellipk(-10), 0.7908718902387385) |
|
|
|
def test_ellipkinc(self): |
|
elkinc = special.ellipkinc(pi/2,.2) |
|
elk = special.ellipk(0.2) |
|
assert_almost_equal(elkinc,elk,15) |
|
alpha = 20*pi/180 |
|
phi = 45*pi/180 |
|
m = sin(alpha)**2 |
|
elkinc = special.ellipkinc(phi,m) |
|
assert_almost_equal(elkinc,0.79398143,8) |
|
|
|
|
|
assert_equal(special.ellipkinc(pi/2, 0.0), pi/2) |
|
assert_equal(special.ellipkinc(pi/2, 1.0), np.inf) |
|
assert_equal(special.ellipkinc(pi/2, -np.inf), 0.0) |
|
assert_equal(special.ellipkinc(pi/2, np.nan), np.nan) |
|
assert_equal(special.ellipkinc(pi/2, 2), np.nan) |
|
assert_equal(special.ellipkinc(0, 0.5), 0.0) |
|
assert_equal(special.ellipkinc(np.inf, 0.5), np.inf) |
|
assert_equal(special.ellipkinc(-np.inf, 0.5), -np.inf) |
|
assert_equal(special.ellipkinc(np.inf, np.inf), np.nan) |
|
assert_equal(special.ellipkinc(np.inf, -np.inf), np.nan) |
|
assert_equal(special.ellipkinc(-np.inf, -np.inf), np.nan) |
|
assert_equal(special.ellipkinc(-np.inf, np.inf), np.nan) |
|
assert_equal(special.ellipkinc(np.nan, 0.5), np.nan) |
|
assert_equal(special.ellipkinc(np.nan, np.nan), np.nan) |
|
|
|
assert_allclose(special.ellipkinc(0.38974112035318718, 1), 0.4, rtol=1e-14) |
|
assert_allclose(special.ellipkinc(1.5707, -10), 0.79084284661724946) |
|
|
|
def test_ellipkinc_2(self): |
|
|
|
|
|
mbad = 0.68359375000000011 |
|
phi = 0.9272952180016123 |
|
m = np.nextafter(mbad, 0) |
|
mvals = [] |
|
for j in range(10): |
|
mvals.append(m) |
|
m = np.nextafter(m, 1) |
|
f = special.ellipkinc(phi, mvals) |
|
assert_array_almost_equal_nulp(f, np.full_like(f, 1.0259330100195334), 1) |
|
|
|
f1 = special.ellipkinc(phi + pi, mvals) |
|
assert_array_almost_equal_nulp(f1, np.full_like(f1, 5.1296650500976675), 2) |
|
|
|
def test_ellipkinc_singular(self): |
|
|
|
xlog = np.logspace(-300, -17, 25) |
|
xlin = np.linspace(1e-17, 0.1, 25) |
|
xlin2 = np.linspace(0.1, pi/2, 25, endpoint=False) |
|
|
|
assert_allclose(special.ellipkinc(xlog, 1), np.arcsinh(np.tan(xlog)), |
|
rtol=1e14) |
|
assert_allclose(special.ellipkinc(xlin, 1), np.arcsinh(np.tan(xlin)), |
|
rtol=1e14) |
|
assert_allclose(special.ellipkinc(xlin2, 1), np.arcsinh(np.tan(xlin2)), |
|
rtol=1e14) |
|
assert_equal(special.ellipkinc(np.pi/2, 1), np.inf) |
|
assert_allclose(special.ellipkinc(-xlog, 1), np.arcsinh(np.tan(-xlog)), |
|
rtol=1e14) |
|
assert_allclose(special.ellipkinc(-xlin, 1), np.arcsinh(np.tan(-xlin)), |
|
rtol=1e14) |
|
assert_allclose(special.ellipkinc(-xlin2, 1), np.arcsinh(np.tan(-xlin2)), |
|
rtol=1e14) |
|
assert_equal(special.ellipkinc(-np.pi/2, 1), np.inf) |
|
|
|
def test_ellipe(self): |
|
ele = special.ellipe(.2) |
|
assert_almost_equal(ele,1.4890350580958529,8) |
|
|
|
assert_equal(special.ellipe(0.0), pi/2) |
|
assert_equal(special.ellipe(1.0), 1.0) |
|
assert_equal(special.ellipe(-np.inf), np.inf) |
|
assert_equal(special.ellipe(np.nan), np.nan) |
|
assert_equal(special.ellipe(2), np.nan) |
|
assert_allclose(special.ellipe(-10), 3.6391380384177689) |
|
|
|
def test_ellipeinc(self): |
|
eleinc = special.ellipeinc(pi/2,.2) |
|
ele = special.ellipe(0.2) |
|
assert_almost_equal(eleinc,ele,14) |
|
|
|
alpha, phi = 52*pi/180,35*pi/180 |
|
m = sin(alpha)**2 |
|
eleinc = special.ellipeinc(phi,m) |
|
assert_almost_equal(eleinc, 0.58823065, 8) |
|
|
|
assert_equal(special.ellipeinc(pi/2, 0.0), pi/2) |
|
assert_equal(special.ellipeinc(pi/2, 1.0), 1.0) |
|
assert_equal(special.ellipeinc(pi/2, -np.inf), np.inf) |
|
assert_equal(special.ellipeinc(pi/2, np.nan), np.nan) |
|
assert_equal(special.ellipeinc(pi/2, 2), np.nan) |
|
assert_equal(special.ellipeinc(0, 0.5), 0.0) |
|
assert_equal(special.ellipeinc(np.inf, 0.5), np.inf) |
|
assert_equal(special.ellipeinc(-np.inf, 0.5), -np.inf) |
|
assert_equal(special.ellipeinc(np.inf, -np.inf), np.inf) |
|
assert_equal(special.ellipeinc(-np.inf, -np.inf), -np.inf) |
|
assert_equal(special.ellipeinc(np.inf, np.inf), np.nan) |
|
assert_equal(special.ellipeinc(-np.inf, np.inf), np.nan) |
|
assert_equal(special.ellipeinc(np.nan, 0.5), np.nan) |
|
assert_equal(special.ellipeinc(np.nan, np.nan), np.nan) |
|
assert_allclose(special.ellipeinc(1.5707, -10), 3.6388185585822876) |
|
|
|
def test_ellipeinc_2(self): |
|
|
|
|
|
mbad = 0.68359375000000011 |
|
phi = 0.9272952180016123 |
|
m = np.nextafter(mbad, 0) |
|
mvals = [] |
|
for j in range(10): |
|
mvals.append(m) |
|
m = np.nextafter(m, 1) |
|
f = special.ellipeinc(phi, mvals) |
|
assert_array_almost_equal_nulp(f, np.full_like(f, 0.84442884574781019), 2) |
|
|
|
f1 = special.ellipeinc(phi + pi, mvals) |
|
assert_array_almost_equal_nulp(f1, np.full_like(f1, 3.3471442287390509), 4) |
|
|
|
|
|
class TestEllipCarlson: |
|
"""Test for Carlson elliptic integrals ellipr[cdfgj]. |
|
The special values used in these tests can be found in Sec. 3 of Carlson |
|
(1994), https://arxiv.org/abs/math/9409227 |
|
""" |
|
def test_elliprc(self): |
|
assert_allclose(elliprc(1, 1), 1) |
|
assert elliprc(1, inf) == 0.0 |
|
assert isnan(elliprc(1, 0)) |
|
assert elliprc(1, complex(1, inf)) == 0.0 |
|
args = array([[0.0, 0.25], |
|
[2.25, 2.0], |
|
[0.0, 1.0j], |
|
[-1.0j, 1.0j], |
|
[0.25, -2.0], |
|
[1.0j, -1.0]]) |
|
expected_results = array([np.pi, |
|
np.log(2.0), |
|
1.1107207345396 * (1.0-1.0j), |
|
1.2260849569072-0.34471136988768j, |
|
np.log(2.0) / 3.0, |
|
0.77778596920447+0.19832484993429j]) |
|
for i, arr in enumerate(args): |
|
assert_allclose(elliprc(*arr), expected_results[i]) |
|
|
|
def test_elliprd(self): |
|
assert_allclose(elliprd(1, 1, 1), 1) |
|
assert_allclose(elliprd(0, 2, 1) / 3.0, 0.59907011736779610371) |
|
assert elliprd(1, 1, inf) == 0.0 |
|
assert np.isinf(elliprd(1, 1, 0)) |
|
assert np.isinf(elliprd(1, 1, complex(0, 0))) |
|
assert np.isinf(elliprd(0, 1, complex(0, 0))) |
|
assert isnan(elliprd(1, 1, -np.finfo(np.float64).tiny / 2.0)) |
|
assert isnan(elliprd(1, 1, complex(-1, 0))) |
|
args = array([[0.0, 2.0, 1.0], |
|
[2.0, 3.0, 4.0], |
|
[1.0j, -1.0j, 2.0], |
|
[0.0, 1.0j, -1.0j], |
|
[0.0, -1.0+1.0j, 1.0j], |
|
[-2.0-1.0j, -1.0j, -1.0+1.0j]]) |
|
expected_results = array([1.7972103521034, |
|
0.16510527294261, |
|
0.65933854154220, |
|
1.2708196271910+2.7811120159521j, |
|
-1.8577235439239-0.96193450888839j, |
|
1.8249027393704-1.2218475784827j]) |
|
for i, arr in enumerate(args): |
|
assert_allclose(elliprd(*arr), expected_results[i]) |
|
|
|
def test_elliprf(self): |
|
assert_allclose(elliprf(1, 1, 1), 1) |
|
assert_allclose(elliprf(0, 1, 2), 1.31102877714605990523) |
|
assert elliprf(1, inf, 1) == 0.0 |
|
assert np.isinf(elliprf(0, 1, 0)) |
|
assert isnan(elliprf(1, 1, -1)) |
|
assert elliprf(complex(inf), 0, 1) == 0.0 |
|
assert isnan(elliprf(1, 1, complex(-inf, 1))) |
|
args = array([[1.0, 2.0, 0.0], |
|
[1.0j, -1.0j, 0.0], |
|
[0.5, 1.0, 0.0], |
|
[-1.0+1.0j, 1.0j, 0.0], |
|
[2.0, 3.0, 4.0], |
|
[1.0j, -1.0j, 2.0], |
|
[-1.0+1.0j, 1.0j, 1.0-1.0j]]) |
|
expected_results = array([1.3110287771461, |
|
1.8540746773014, |
|
1.8540746773014, |
|
0.79612586584234-1.2138566698365j, |
|
0.58408284167715, |
|
1.0441445654064, |
|
0.93912050218619-0.53296252018635j]) |
|
for i, arr in enumerate(args): |
|
assert_allclose(elliprf(*arr), expected_results[i]) |
|
|
|
def test_elliprg(self): |
|
assert_allclose(elliprg(1, 1, 1), 1) |
|
assert_allclose(elliprg(0, 0, 1), 0.5) |
|
assert_allclose(elliprg(0, 0, 0), 0) |
|
assert np.isinf(elliprg(1, inf, 1)) |
|
assert np.isinf(elliprg(complex(inf), 1, 1)) |
|
args = array([[0.0, 16.0, 16.0], |
|
[2.0, 3.0, 4.0], |
|
[0.0, 1.0j, -1.0j], |
|
[-1.0+1.0j, 1.0j, 0.0], |
|
[-1.0j, -1.0+1.0j, 1.0j], |
|
[0.0, 0.0796, 4.0]]) |
|
expected_results = array([np.pi, |
|
1.7255030280692, |
|
0.42360654239699, |
|
0.44660591677018+0.70768352357515j, |
|
0.36023392184473+0.40348623401722j, |
|
1.0284758090288]) |
|
for i, arr in enumerate(args): |
|
assert_allclose(elliprg(*arr), expected_results[i]) |
|
|
|
def test_elliprj(self): |
|
assert_allclose(elliprj(1, 1, 1, 1), 1) |
|
assert elliprj(1, 1, inf, 1) == 0.0 |
|
assert isnan(elliprj(1, 0, 0, 0)) |
|
assert isnan(elliprj(-1, 1, 1, 1)) |
|
assert elliprj(1, 1, 1, inf) == 0.0 |
|
args = array([[0.0, 1.0, 2.0, 3.0], |
|
[2.0, 3.0, 4.0, 5.0], |
|
[2.0, 3.0, 4.0, -1.0+1.0j], |
|
[1.0j, -1.0j, 0.0, 2.0], |
|
[-1.0+1.0j, -1.0-1.0j, 1.0, 2.0], |
|
[1.0j, -1.0j, 0.0, 1.0-1.0j], |
|
[-1.0+1.0j, -1.0-1.0j, 1.0, -3.0+1.0j], |
|
[2.0, 3.0, 4.0, -0.5], |
|
[2.0, 3.0, 4.0, -5.0]]) |
|
expected_results = array([0.77688623778582, |
|
0.14297579667157, |
|
0.13613945827771-0.38207561624427j, |
|
1.6490011662711, |
|
0.94148358841220, |
|
1.8260115229009+1.2290661908643j, |
|
-0.61127970812028-1.0684038390007j, |
|
0.24723819703052, |
|
-0.12711230042964]) |
|
for i, arr in enumerate(args): |
|
assert_allclose(elliprj(*arr), expected_results[i]) |
|
|
|
@pytest.mark.xfail(reason="Insufficient accuracy on 32-bit") |
|
def test_elliprj_hard(self): |
|
assert_allclose(elliprj(6.483625725195452e-08, |
|
1.1649136528196886e-27, |
|
3.6767340167168e+13, |
|
0.493704617023468), |
|
8.63426920644241857617477551054e-6, |
|
rtol=5e-15, atol=1e-20) |
|
assert_allclose(elliprj(14.375105857849121, |
|
9.993988969725365e-11, |
|
1.72844262269944e-26, |
|
5.898871222598245e-06), |
|
829774.1424801627252574054378691828, |
|
rtol=5e-15, atol=1e-20) |
|
|
|
|
|
class TestEllipLegendreCarlsonIdentities: |
|
"""Test identities expressing the Legendre elliptic integrals in terms |
|
of Carlson's symmetric integrals. These identities can be found |
|
in the DLMF https://dlmf.nist.gov/19.25#i . |
|
""" |
|
|
|
def setup_class(self): |
|
self.m_n1_1 = np.arange(-1., 1., 0.01) |
|
|
|
self.max_neg = finfo(double).min |
|
|
|
self.very_neg_m = -1. * 2.**arange(-1 + |
|
np.log2(-self.max_neg), 0., |
|
-1.) |
|
self.ms_up_to_1 = np.concatenate(([self.max_neg], |
|
self.very_neg_m, |
|
self.m_n1_1)) |
|
|
|
def test_k(self): |
|
"""Test identity: |
|
K(m) = R_F(0, 1-m, 1) |
|
""" |
|
m = self.ms_up_to_1 |
|
assert_allclose(ellipk(m), elliprf(0., 1.-m, 1.)) |
|
|
|
def test_km1(self): |
|
"""Test identity: |
|
K(m) = R_F(0, 1-m, 1) |
|
But with the ellipkm1 function |
|
""" |
|
|
|
tiny = finfo(double).tiny |
|
|
|
m1 = tiny * 2.**arange(0., -np.log2(tiny)) |
|
assert_allclose(ellipkm1(m1), elliprf(0., m1, 1.)) |
|
|
|
def test_e(self): |
|
"""Test identity: |
|
E(m) = 2*R_G(0, 1-k^2, 1) |
|
""" |
|
m = self.ms_up_to_1 |
|
assert_allclose(ellipe(m), 2.*elliprg(0., 1.-m, 1.)) |
|
|
|
|
|
class TestErf: |
|
|
|
def test_erf(self): |
|
er = special.erf(.25) |
|
assert_almost_equal(er,0.2763263902,8) |
|
|
|
def test_erf_zeros(self): |
|
erz = special.erf_zeros(5) |
|
erzr = array([1.45061616+1.88094300j, |
|
2.24465928+2.61657514j, |
|
2.83974105+3.17562810j, |
|
3.33546074+3.64617438j, |
|
3.76900557+4.06069723j]) |
|
assert_array_almost_equal(erz,erzr,4) |
|
|
|
def _check_variant_func(self, func, other_func, rtol, atol=0): |
|
rng = np.random.RandomState(1234) |
|
n = 10000 |
|
x = rng.pareto(0.02, n) * (2*rng.randint(0, 2, n) - 1) |
|
y = rng.pareto(0.02, n) * (2*rng.randint(0, 2, n) - 1) |
|
z = x + 1j*y |
|
|
|
with np.errstate(all='ignore'): |
|
w = other_func(z) |
|
w_real = other_func(x).real |
|
|
|
mask = np.isfinite(w) |
|
w = w[mask] |
|
z = z[mask] |
|
|
|
mask = np.isfinite(w_real) |
|
w_real = w_real[mask] |
|
x = x[mask] |
|
|
|
|
|
assert_func_equal(func, w, z, rtol=rtol, atol=atol) |
|
assert_func_equal(func, w_real, x, rtol=rtol, atol=atol) |
|
|
|
def test_erfc_consistent(self): |
|
self._check_variant_func( |
|
cephes.erfc, |
|
lambda z: 1 - cephes.erf(z), |
|
rtol=1e-12, |
|
atol=1e-14 |
|
) |
|
|
|
def test_erfcx_consistent(self): |
|
self._check_variant_func( |
|
cephes.erfcx, |
|
lambda z: np.exp(z*z) * cephes.erfc(z), |
|
rtol=1e-12 |
|
) |
|
|
|
def test_erfi_consistent(self): |
|
self._check_variant_func( |
|
cephes.erfi, |
|
lambda z: -1j * cephes.erf(1j*z), |
|
rtol=1e-12 |
|
) |
|
|
|
def test_dawsn_consistent(self): |
|
self._check_variant_func( |
|
cephes.dawsn, |
|
lambda z: sqrt(pi)/2 * np.exp(-z*z) * cephes.erfi(z), |
|
rtol=1e-12 |
|
) |
|
|
|
def test_erf_nan_inf(self): |
|
vals = [np.nan, -np.inf, np.inf] |
|
expected = [np.nan, -1, 1] |
|
assert_allclose(special.erf(vals), expected, rtol=1e-15) |
|
|
|
def test_erfc_nan_inf(self): |
|
vals = [np.nan, -np.inf, np.inf] |
|
expected = [np.nan, 2, 0] |
|
assert_allclose(special.erfc(vals), expected, rtol=1e-15) |
|
|
|
def test_erfcx_nan_inf(self): |
|
vals = [np.nan, -np.inf, np.inf] |
|
expected = [np.nan, np.inf, 0] |
|
assert_allclose(special.erfcx(vals), expected, rtol=1e-15) |
|
|
|
def test_erfi_nan_inf(self): |
|
vals = [np.nan, -np.inf, np.inf] |
|
expected = [np.nan, -np.inf, np.inf] |
|
assert_allclose(special.erfi(vals), expected, rtol=1e-15) |
|
|
|
def test_dawsn_nan_inf(self): |
|
vals = [np.nan, -np.inf, np.inf] |
|
expected = [np.nan, -0.0, 0.0] |
|
assert_allclose(special.dawsn(vals), expected, rtol=1e-15) |
|
|
|
def test_wofz_nan_inf(self): |
|
vals = [np.nan, -np.inf, np.inf] |
|
expected = [np.nan + np.nan * 1.j, 0.-0.j, 0.+0.j] |
|
assert_allclose(special.wofz(vals), expected, rtol=1e-15) |
|
|
|
|
|
class TestEuler: |
|
def test_euler(self): |
|
eu0 = special.euler(0) |
|
eu1 = special.euler(1) |
|
eu2 = special.euler(2) |
|
assert_allclose(eu0, [1], rtol=1e-15) |
|
assert_allclose(eu1, [1, 0], rtol=1e-15) |
|
assert_allclose(eu2, [1, 0, -1], rtol=1e-15) |
|
eu24 = special.euler(24) |
|
mathworld = [1,1,5,61,1385,50521,2702765,199360981, |
|
19391512145,2404879675441, |
|
370371188237525,69348874393137901, |
|
15514534163557086905] |
|
correct = zeros((25,),'d') |
|
for k in range(0,13): |
|
if (k % 2): |
|
correct[2*k] = -float(mathworld[k]) |
|
else: |
|
correct[2*k] = float(mathworld[k]) |
|
with np.errstate(all='ignore'): |
|
err = nan_to_num((eu24-correct)/correct) |
|
errmax = max(err) |
|
assert_almost_equal(errmax, 0.0, 14) |
|
|
|
|
|
class TestExp: |
|
def test_exp2(self): |
|
ex = special.exp2(2) |
|
exrl = 2**2 |
|
assert_equal(ex,exrl) |
|
|
|
def test_exp2more(self): |
|
exm = special.exp2(2.5) |
|
exmrl = 2**(2.5) |
|
assert_almost_equal(exm,exmrl,8) |
|
|
|
def test_exp10(self): |
|
ex = special.exp10(2) |
|
exrl = 10**2 |
|
assert_approx_equal(ex,exrl) |
|
|
|
def test_exp10more(self): |
|
exm = special.exp10(2.5) |
|
exmrl = 10**(2.5) |
|
assert_almost_equal(exm,exmrl,8) |
|
|
|
def test_expm1(self): |
|
ex = (special.expm1(2),special.expm1(3),special.expm1(4)) |
|
exrl = (exp(2)-1,exp(3)-1,exp(4)-1) |
|
assert_array_almost_equal(ex,exrl,8) |
|
|
|
def test_expm1more(self): |
|
ex1 = (special.expm1(2),special.expm1(2.1),special.expm1(2.2)) |
|
exrl1 = (exp(2)-1,exp(2.1)-1,exp(2.2)-1) |
|
assert_array_almost_equal(ex1,exrl1,8) |
|
|
|
|
|
def assert_really_equal(x, y, rtol=None): |
|
""" |
|
Sharper assertion function that is stricter about matching types, not just values |
|
|
|
This is useful/necessary in some cases: |
|
* dtypes for arrays that have the same _values_ (e.g. element 1.0 vs 1) |
|
* distinguishing complex from real NaN |
|
* result types for scalars |
|
|
|
We still want to be able to allow a relative tolerance for the values though. |
|
The main logic comparison logic is handled by the xp_assert_* functions. |
|
""" |
|
def assert_func(x, y): |
|
xp_assert_equal(x, y) if rtol is None else xp_assert_close(x, y, rtol=rtol) |
|
|
|
def assert_complex_nan(x): |
|
assert np.isnan(x.real) and np.isnan(x.imag) |
|
|
|
assert type(x) is type(y), f"types not equal: {type(x)}, {type(y)}" |
|
|
|
|
|
|
|
if isinstance(x, np.ndarray): |
|
|
|
assert x.dtype == y.dtype |
|
|
|
assert_func(x, y) |
|
for elem_x, elem_y in zip(x.ravel(), y.ravel()): |
|
assert_really_equal(elem_x, elem_y, rtol=rtol) |
|
elif np.isnan(x) and np.isnan(y) and _is_subdtype(type(x), "c"): |
|
assert_complex_nan(x) and assert_complex_nan(y) |
|
|
|
else: |
|
assert_func(x, y) |
|
|
|
|
|
class TestFactorialFunctions: |
|
def factorialk_ref(self, n, k, exact, extend): |
|
if exact: |
|
return special.factorialk(n, k=k, exact=True) |
|
|
|
r = np.mod(n, k) if extend == "zero" else 1 |
|
vals = np.power(k, (n - r)/k) * special.gamma(n/k + 1) * special.rgamma(r/k + 1) |
|
|
|
return vals * np.maximum(r, 1) |
|
|
|
@pytest.mark.parametrize("exact,extend", |
|
[(True, "zero"), (False, "zero"), (False, "complex")]) |
|
def test_factorialx_scalar_return_type(self, exact, extend): |
|
kw = {"exact": exact, "extend": extend} |
|
assert np.isscalar(special.factorial(1, **kw)) |
|
assert np.isscalar(special.factorial2(1, **kw)) |
|
assert np.isscalar(special.factorialk(1, k=3, **kw)) |
|
|
|
@pytest.mark.parametrize("n", [-1, -2, -3]) |
|
@pytest.mark.parametrize("exact", [True, False]) |
|
def test_factorialx_negative_extend_zero(self, exact, n): |
|
kw = {"exact": exact} |
|
assert_equal(special.factorial(n, **kw), 0) |
|
assert_equal(special.factorial2(n, **kw), 0) |
|
assert_equal(special.factorialk(n, k=3, **kw), 0) |
|
|
|
@pytest.mark.parametrize("exact", [True, False]) |
|
def test_factorialx_negative_extend_zero_array(self, exact): |
|
kw = {"exact": exact} |
|
rtol = 1e-15 |
|
n = [-5, -4, 0, 1] |
|
|
|
expected = np.array([0, 0, 1, 1], dtype=native_int if exact else np.float64) |
|
assert_really_equal(special.factorial(n, **kw), expected, rtol=rtol) |
|
assert_really_equal(special.factorial2(n, **kw), expected, rtol=rtol) |
|
assert_really_equal(special.factorialk(n, k=3, **kw), expected, rtol=rtol) |
|
|
|
@pytest.mark.parametrize("n", [-1.1, -2.2, -3.3]) |
|
def test_factorialx_negative_extend_complex(self, n): |
|
kw = {"extend": "complex"} |
|
exp_1 = {-1.1: -10.686287021193184771, |
|
-2.2: 4.8509571405220931958, |
|
-3.3: -1.4471073942559181166} |
|
exp_2 = {-1.1: 1.0725776858167496309, |
|
-2.2: -3.9777171783768419874, |
|
-3.3: -0.99588841846200555977} |
|
exp_k = {-1.1: 0.73565345382163025659, |
|
-2.2: 1.1749163167190809498, |
|
-3.3: -2.4780584257450583713} |
|
rtol = 3e-15 |
|
assert_allclose(special.factorial(n, **kw), exp_1[n], rtol=rtol) |
|
assert_allclose(special.factorial2(n, **kw), exp_2[n], rtol=rtol) |
|
assert_allclose(special.factorialk(n, k=3, **kw), exp_k[n], rtol=rtol) |
|
assert_allclose(special.factorial([n], **kw)[0], exp_1[n], rtol=rtol) |
|
assert_allclose(special.factorial2([n], **kw)[0], exp_2[n], rtol=rtol) |
|
assert_allclose(special.factorialk([n], k=3, **kw)[0], exp_k[n], rtol=rtol) |
|
|
|
@pytest.mark.parametrize("imag", [0, 0j]) |
|
@pytest.mark.parametrize("n_outer", [-1, -2, -3]) |
|
def test_factorialx_negative_extend_complex_poles(self, n_outer, imag): |
|
kw = {"extend": "complex"} |
|
def _check(n): |
|
complexify = _is_subdtype(type(n), "c") |
|
|
|
complex_nan = np.complex128("nan+nanj") |
|
exp = np.complex128("nan+nanj") if complexify else np.float64("nan") |
|
|
|
assert_really_equal(special.factorial(n, **kw), exp) |
|
assert_really_equal(special.factorial2(n * 2, **kw), exp) |
|
assert_really_equal(special.factorialk(n * 3, k=3, **kw), exp) |
|
|
|
c = 1.5 - 2j |
|
assert_really_equal(special.factorialk(n * c, k=c, **kw), complex_nan) |
|
|
|
assert_really_equal(special.factorial([n], **kw)[0], exp) |
|
assert_really_equal(special.factorial2([n * 2], **kw)[0], exp) |
|
assert_really_equal(special.factorialk([n * 3], k=3, **kw)[0], exp) |
|
assert_really_equal(special.factorialk([n * c], k=c, **kw)[0], complex_nan) |
|
|
|
|
|
|
|
_check(n_outer + imag) |
|
|
|
_check(100_000 * n_outer + imag) |
|
|
|
@pytest.mark.parametrize("boxed", [True, False]) |
|
@pytest.mark.parametrize("extend", ["zero", "complex"]) |
|
@pytest.mark.parametrize( |
|
"n", |
|
[ |
|
np.nan, np.float64("nan"), np.nan + np.nan*1j, np.complex128("nan+nanj"), |
|
np.inf, np.inf + 0j, -np.inf, -np.inf + 0j, None, np.datetime64("nat") |
|
], |
|
ids=[ |
|
"NaN", "np.float64('nan')", "NaN+i*NaN", "np.complex128('nan+nanj')", |
|
"inf", "inf+0i", "-inf", "-inf+0i", "None", "NaT" |
|
] |
|
) |
|
@pytest.mark.parametrize( |
|
"factorialx", |
|
[special.factorial, special.factorial2, special.factorialk] |
|
) |
|
def test_factorialx_inf_nan(self, factorialx, n, extend, boxed): |
|
|
|
kw = {"exact": False, "extend": extend} |
|
if factorialx == special.factorialk: |
|
kw["k"] = 3 |
|
|
|
|
|
permissible_types = ["i", "f", "c"] if boxed else ["i", "f", "c", type(None)] |
|
|
|
types_need_complex_ext = "c" if factorialx == special.factorial else ["f", "c"] |
|
|
|
if not _is_subdtype(type(n), permissible_types): |
|
with pytest.raises(ValueError, match="Unsupported data type.*"): |
|
factorialx([n] if boxed else n, **kw) |
|
elif _is_subdtype(type(n), types_need_complex_ext) and extend != "complex": |
|
with pytest.raises(ValueError, match="In order to use non-integer.*"): |
|
factorialx([n] if boxed else n, **kw) |
|
else: |
|
|
|
complexify = (extend == "complex") and _is_subdtype(type(n), "c") |
|
|
|
|
|
expected = np.complex128("nan+nanj") if complexify else np.float64("nan") |
|
|
|
if _is_subdtype(type(n), "f") and np.isinf(n): |
|
|
|
neg_inf_result = np.float64(0 if (extend == "zero") else "nan") |
|
expected = np.float64("inf") if (n > 0) else neg_inf_result |
|
|
|
result = factorialx([n], **kw)[0] if boxed else factorialx(n, **kw) |
|
assert_really_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize("extend", [0, 1.1, np.nan, "string"]) |
|
def test_factorialx_raises_extend(self, extend): |
|
with pytest.raises(ValueError, match="argument `extend` must be.*"): |
|
special.factorial(1, extend=extend) |
|
with pytest.raises(ValueError, match="argument `extend` must be.*"): |
|
special.factorial2(1, extend=extend) |
|
with pytest.raises(ValueError, match="argument `extend` must be.*"): |
|
special.factorialk(1, k=3, exact=True, extend=extend) |
|
|
|
@pytest.mark.parametrize("levels", range(1, 5)) |
|
@pytest.mark.parametrize("exact", [True, False]) |
|
def test_factorialx_array_shape(self, levels, exact): |
|
def _nest_me(x, k=1): |
|
""" |
|
Double x and nest it k times |
|
|
|
For example: |
|
>>> _nest_me([3, 4], 2) |
|
[[[3, 4], [3, 4]], [[3, 4], [3, 4]]] |
|
""" |
|
if k == 0: |
|
return x |
|
else: |
|
return _nest_me([x, x], k-1) |
|
|
|
def _check(res, nucleus): |
|
exp = np.array(_nest_me(nucleus, k=levels), dtype=object) |
|
|
|
|
|
assert_allclose(res.astype(np.float64), exp.astype(np.float64)) |
|
|
|
n = np.array(_nest_me([5, 25], k=levels)) |
|
exp_nucleus = {1: [120, math.factorial(25)], |
|
|
|
2: [15, special.factorial2(25, exact=True)], |
|
3: [10, special.factorialk(25, 3, exact=True)]} |
|
|
|
_check(special.factorial(n, exact=exact), exp_nucleus[1]) |
|
_check(special.factorial2(n, exact=exact), exp_nucleus[2]) |
|
_check(special.factorialk(n, 3, exact=exact), exp_nucleus[3]) |
|
|
|
@pytest.mark.parametrize("exact", [True, False]) |
|
@pytest.mark.parametrize("dtype", [ |
|
None, int, np.int8, np.int16, np.int32, np.int64, |
|
np.uint8, np.uint16, np.uint32, np.uint64 |
|
]) |
|
@pytest.mark.parametrize("dim", range(0, 5)) |
|
def test_factorialx_array_dimension(self, dim, dtype, exact): |
|
n = np.array(5, dtype=dtype, ndmin=dim) |
|
exp = {1: 120, 2: 15, 3: 10} |
|
assert_allclose(special.factorial(n, exact=exact), |
|
np.array(exp[1], ndmin=dim)) |
|
assert_allclose(special.factorial2(n, exact=exact), |
|
np.array(exp[2], ndmin=dim)) |
|
assert_allclose(special.factorialk(n, 3, exact=exact), |
|
np.array(exp[3], ndmin=dim)) |
|
|
|
@pytest.mark.parametrize("exact", [True, False]) |
|
@pytest.mark.parametrize("level", range(1, 5)) |
|
def test_factorialx_array_like(self, level, exact): |
|
def _nest_me(x, k=1): |
|
if k == 0: |
|
return x |
|
else: |
|
return _nest_me([x], k-1) |
|
|
|
n = _nest_me([5], k=level-1) |
|
exp_nucleus = {1: 120, 2: 15, 3: 10} |
|
assert_func = assert_array_equal if exact else assert_allclose |
|
assert_func(special.factorial(n, exact=exact), |
|
np.array(exp_nucleus[1], ndmin=level)) |
|
assert_func(special.factorial2(n, exact=exact), |
|
np.array(exp_nucleus[2], ndmin=level)) |
|
assert_func(special.factorialk(n, 3, exact=exact), |
|
np.array(exp_nucleus[3], ndmin=level)) |
|
|
|
@pytest.mark.parametrize("dtype", [np.uint8, np.uint16, np.uint32, np.uint64]) |
|
@pytest.mark.parametrize("exact,extend", |
|
[(True, "zero"), (False, "zero"), (False, "complex")]) |
|
def test_factorialx_uint(self, exact, extend, dtype): |
|
|
|
kw = {"exact": exact, "extend": extend} |
|
assert_func = assert_array_equal if exact else assert_allclose |
|
def _check(n): |
|
n_ref = n.astype(np.int64) if isinstance(n, np.ndarray) else np.int64(n) |
|
assert_func(special.factorial(n, **kw), special.factorial(n_ref, **kw)) |
|
assert_func(special.factorial2(n, **kw), special.factorial2(n_ref, **kw)) |
|
assert_func(special.factorialk(n, k=3, **kw), |
|
special.factorialk(n_ref, k=3, **kw)) |
|
_check(dtype(0)) |
|
_check(dtype(1)) |
|
_check(np.array(0, dtype=dtype)) |
|
_check(np.array([0, 1], dtype=dtype)) |
|
|
|
|
|
@pytest.mark.parametrize('n', range(30, 180, 10)) |
|
def test_factorial_accuracy(self, n): |
|
|
|
|
|
|
|
rtol = 6e-14 if sys.platform == 'win32' else 1e-15 |
|
|
|
assert_allclose(float(special.factorial(n, exact=True)), |
|
special.factorial(n, exact=False), rtol=rtol) |
|
assert_allclose(special.factorial([n], exact=True).astype(float), |
|
special.factorial([n], exact=False), rtol=rtol) |
|
|
|
@pytest.mark.parametrize('n', |
|
list(range(0, 22)) + list(range(30, 180, 10))) |
|
def test_factorial_int_reference(self, n): |
|
|
|
correct = math.factorial(n) |
|
assert_array_equal(correct, special.factorial(n, exact=True)) |
|
assert_array_equal(correct, special.factorial([n], exact=True)[0]) |
|
|
|
rtol = 8e-14 if sys.platform == 'win32' else 1e-15 |
|
|
|
correct = float(correct) |
|
assert_allclose(correct, special.factorial(n, exact=False), rtol=rtol) |
|
assert_allclose(correct, special.factorial([n], exact=False)[0], rtol=rtol) |
|
|
|
|
|
kw = {"exact": False, "extend": "complex"} |
|
assert_allclose(correct, special.factorial(n, **kw), rtol=rtol) |
|
assert_allclose(correct, special.factorial([n], **kw)[0], rtol=rtol) |
|
|
|
def test_factorial_float_reference(self): |
|
def _check(n, expected): |
|
rtol = 8e-14 if sys.platform == 'win32' else 1e-15 |
|
assert_allclose(special.factorial(n), expected, rtol=rtol) |
|
assert_allclose(special.factorial([n])[0], expected, rtol=rtol) |
|
|
|
with pytest.raises(ValueError, match="`exact=True` only supports.*"): |
|
special.factorial(n, exact=True) |
|
with pytest.raises(ValueError, match="`exact=True` only supports.*"): |
|
special.factorial([n], exact=True) |
|
|
|
|
|
_check(0.01, 0.994325851191506032181932988) |
|
_check(1.11, 1.051609009483625091514147465) |
|
_check(5.55, 314.9503192327208241614959052) |
|
_check(11.1, 50983227.84411615655137170553) |
|
_check(33.3, 2.493363339642036352229215273e+37) |
|
_check(55.5, 9.479934358436729043289162027e+73) |
|
_check(77.7, 3.060540559059579022358692625e+114) |
|
_check(99.9, 5.885840419492871504575693337e+157) |
|
|
|
_check(170.6243, 1.79698185749571048960082e+308) |
|
|
|
def test_factorial_complex_reference(self): |
|
def _check(n, expected): |
|
rtol = 3e-15 if sys.platform == 'win32' else 2e-15 |
|
kw = {"exact": False, "extend": "complex"} |
|
assert_allclose(special.factorial(n, **kw), expected, rtol=rtol) |
|
assert_allclose(special.factorial([n], **kw)[0], expected, rtol=rtol) |
|
|
|
|
|
|
|
_check(-0.5, expected=1.7724538509055160276) |
|
_check(-0.5 + 0j, expected=1.7724538509055160276 + 0j) |
|
_check(2 + 2j, expected=-0.42263728631120216694 + 0.87181425569650686062j) |
|
|
|
_check(-0.9999, expected=9999.422883232725532) |
|
_check(-1 + 0.0001j, expected=-0.57721565582674219 - 9999.9999010944009697j) |
|
|
|
@pytest.mark.parametrize("dtype", [np.int64, np.float64, |
|
np.complex128, object]) |
|
@pytest.mark.parametrize("extend", ["zero", "complex"]) |
|
@pytest.mark.parametrize("exact", [True, False]) |
|
@pytest.mark.parametrize("dim", range(0, 5)) |
|
|
|
@pytest.mark.parametrize( |
|
"content", |
|
[[], [1], [1.1], [np.nan], [np.nan + np.nan * 1j], [np.nan, 1]], |
|
ids=["[]", "[1]", "[1.1]", "[NaN]", "[NaN+i*NaN]", "[NaN, 1]"], |
|
) |
|
def test_factorial_array_corner_cases(self, content, dim, exact, extend, dtype): |
|
if dtype is object and SCIPY_ARRAY_API: |
|
pytest.skip("object arrays unsupported in array API mode") |
|
|
|
if dtype is np.int64 and any(np.isnan(x) or (x != int(x)) for x in content): |
|
pytest.skip("impossible combination") |
|
if dtype == np.float64 and any(_is_subdtype(type(x), "c") for x in content): |
|
pytest.skip("impossible combination") |
|
|
|
kw = {"exact": exact, "extend": extend} |
|
|
|
content = content if (dim > 0 or len(content) != 1) else content[0] |
|
n = np.array(content, ndmin=dim, dtype=dtype) |
|
|
|
result = None |
|
if extend == "complex" and exact: |
|
with pytest.raises(ValueError, match="Incompatible options:.*"): |
|
special.factorial(n, **kw) |
|
elif not _is_subdtype(n.dtype, ["i", "f", "c"]): |
|
with pytest.raises(ValueError, match="Unsupported data type.*"): |
|
special.factorial(n, **kw) |
|
elif _is_subdtype(n.dtype, "c") and extend != "complex": |
|
with pytest.raises(ValueError, match="In order to use non-integer.*"): |
|
special.factorial(n, **kw) |
|
elif exact and not _is_subdtype(n.dtype, "i"): |
|
with pytest.raises(ValueError, match="`exact=True` only supports.*"): |
|
special.factorial(n, **kw) |
|
else: |
|
result = special.factorial(n, **kw) |
|
|
|
if result is not None: |
|
|
|
ref = [special.factorial(x, **kw) for x in n.ravel()] |
|
|
|
ref = ref[0] if len(ref) == 1 else ref |
|
|
|
|
|
if n.size: |
|
cx = (extend == "complex") and _is_subdtype(n.dtype, "c") |
|
dtype = np.complex128 if cx else (native_int if exact else np.float64) |
|
expected = np.array(ref, ndmin=dim, dtype=dtype) |
|
assert_really_equal(result, expected, rtol=1e-15) |
|
|
|
@pytest.mark.parametrize("extend", ["zero", "complex"]) |
|
@pytest.mark.parametrize("exact", [True, False]) |
|
@pytest.mark.parametrize("n", [1, 1.1, 2 + 2j, np.nan, np.nan + np.nan*1j, None], |
|
ids=["1", "1.1", "2+2j", "NaN", "NaN+i*NaN", "None"]) |
|
def test_factorial_scalar_corner_cases(self, n, exact, extend): |
|
kw = {"exact": exact, "extend": extend} |
|
if extend == "complex" and exact: |
|
with pytest.raises(ValueError, match="Incompatible options:.*"): |
|
special.factorial(n, **kw) |
|
elif not _is_subdtype(type(n), ["i", "f", "c", type(None)]): |
|
with pytest.raises(ValueError, match="Unsupported data type.*"): |
|
special.factorial(n, **kw) |
|
elif _is_subdtype(type(n), "c") and extend != "complex": |
|
with pytest.raises(ValueError, match="In order to use non-integer.*"): |
|
special.factorial(n, **kw) |
|
elif n is None or np.isnan(n): |
|
|
|
complexify = (extend == "complex") and _is_subdtype(type(n), "c") |
|
expected = np.complex128("nan+nanj") if complexify else np.float64("nan") |
|
assert_really_equal(special.factorial(n, **kw), expected) |
|
elif exact and _is_subdtype(type(n), "f"): |
|
with pytest.raises(ValueError, match="`exact=True` only supports.*"): |
|
special.factorial(n, **kw) |
|
else: |
|
assert_equal(special.factorial(n, **kw), special.gamma(n + 1)) |
|
|
|
|
|
@pytest.mark.parametrize('n', range(30, 180, 11)) |
|
def test_factorial2_accuracy(self, n): |
|
|
|
|
|
|
|
rtol = 2e-14 if sys.platform == 'win32' else 1e-15 |
|
|
|
assert_allclose(float(special.factorial2(n, exact=True)), |
|
special.factorial2(n, exact=False), rtol=rtol) |
|
assert_allclose(special.factorial2([n], exact=True).astype(float), |
|
special.factorial2([n], exact=False), rtol=rtol) |
|
|
|
@pytest.mark.parametrize('n', |
|
list(range(0, 22)) + list(range(30, 180, 11))) |
|
def test_factorial2_int_reference(self, n): |
|
|
|
|
|
|
|
correct = functools.reduce(operator.mul, list(range(n, 0, -2)), 1) |
|
|
|
assert_array_equal(correct, special.factorial2(n, exact=True)) |
|
assert_array_equal(correct, special.factorial2([n], exact=True)[0]) |
|
|
|
rtol = 2e-14 if sys.platform == 'win32' else 1e-15 |
|
|
|
correct = float(correct) |
|
assert_allclose(correct, special.factorial2(n, exact=False), rtol=rtol) |
|
assert_allclose(correct, special.factorial2([n], exact=False)[0], rtol=rtol) |
|
|
|
|
|
kw = {"exact": False, "extend": "complex"} |
|
|
|
if n % 2 == 1: |
|
assert_allclose(correct, special.factorial2(n, **kw), rtol=rtol) |
|
assert_allclose(correct, special.factorial2([n], **kw)[0], rtol=rtol) |
|
|
|
def test_factorial2_complex_reference(self): |
|
|
|
def _check(n, expected): |
|
rtol = 5e-15 |
|
kw = {"exact": False, "extend": "complex"} |
|
assert_allclose(special.factorial2(n, **kw), expected, rtol=rtol) |
|
assert_allclose(special.factorial2([n], **kw)[0], expected, rtol=rtol) |
|
|
|
|
|
|
|
_check(3, expected=3) |
|
_check(4, expected=special.factorial2(4) * math.sqrt(2 / math.pi)) |
|
_check(20, expected=special.factorial2(20) * math.sqrt(2 / math.pi)) |
|
|
|
_check(-0.5, expected=0.82217895866245855122) |
|
_check(-0.5 + 0j, expected=0.82217895866245855122 + 0j) |
|
_check(3 + 3j, expected=-1.0742236630142471526 + 1.4421398439387262897j) |
|
|
|
_check(-1.9999, expected=7978.8918745523440682) |
|
_check(-2 + 0.0001j, expected=0.0462499835314308444 - 7978.84559148876374493j) |
|
|
|
@pytest.mark.parametrize("dtype", [np.int64, np.float64, |
|
np.complex128, object]) |
|
@pytest.mark.parametrize("extend", ["zero", "complex"]) |
|
@pytest.mark.parametrize("exact", [True, False]) |
|
@pytest.mark.parametrize("dim", range(0, 5)) |
|
|
|
@pytest.mark.parametrize( |
|
"content", |
|
[[], [1], [1.1], [np.nan], [np.nan + np.nan * 1j], [np.nan, 1]], |
|
ids=["[]", "[1]", "[1.1]", "[NaN]", "[NaN+i*NaN]", "[NaN, 1]"], |
|
) |
|
def test_factorial2_array_corner_cases(self, content, dim, exact, extend, dtype): |
|
|
|
if dtype == np.int64 and any(np.isnan(x) or (x != int(x)) for x in content): |
|
pytest.skip("impossible combination") |
|
if dtype == np.float64 and any(_is_subdtype(type(x), "c") for x in content): |
|
pytest.skip("impossible combination") |
|
|
|
kw = {"exact": exact, "extend": extend} |
|
|
|
content = content if (dim > 0 or len(content) != 1) else content[0] |
|
n = np.array(content, ndmin=dim, dtype=dtype) |
|
|
|
result = None |
|
if extend == "complex" and exact: |
|
with pytest.raises(ValueError, match="Incompatible options:.*"): |
|
special.factorial2(n, **kw) |
|
elif not _is_subdtype(n.dtype, ["i", "f", "c"]): |
|
with pytest.raises(ValueError, match="Unsupported data type.*"): |
|
special.factorial2(n, **kw) |
|
elif _is_subdtype(n.dtype, ["f", "c"]) and extend != "complex": |
|
with pytest.raises(ValueError, match="In order to use non-integer.*"): |
|
special.factorial2(n, **kw) |
|
else: |
|
result = special.factorial2(n, **kw) |
|
|
|
if result is not None: |
|
|
|
ref = [special.factorial2(x, **kw) for x in n.ravel()] |
|
|
|
ref = ref[0] if len(ref) == 1 else ref |
|
|
|
|
|
if n.size: |
|
cx = (extend == "complex") and _is_subdtype(n.dtype, "c") |
|
dtype = np.complex128 if cx else (native_int if exact else np.float64) |
|
expected = np.array(ref, ndmin=dim, dtype=dtype) |
|
assert_really_equal(result, expected, rtol=2e-15) |
|
|
|
@pytest.mark.parametrize("extend", ["zero", "complex"]) |
|
@pytest.mark.parametrize("exact", [True, False]) |
|
@pytest.mark.parametrize("n", [1, 1.1, 2 + 2j, np.nan, np.nan + np.nan*1j, None], |
|
ids=["1", "1.1", "2+2j", "NaN", "NaN+i*NaN", "None"]) |
|
def test_factorial2_scalar_corner_cases(self, n, exact, extend): |
|
kw = {"exact": exact, "extend": extend} |
|
if extend == "complex" and exact: |
|
with pytest.raises(ValueError, match="Incompatible options:.*"): |
|
special.factorial2(n, **kw) |
|
elif not _is_subdtype(type(n), ["i", "f", "c", type(None)]): |
|
with pytest.raises(ValueError, match="Unsupported data type.*"): |
|
special.factorial2(n, **kw) |
|
elif _is_subdtype(type(n), ["f", "c"]) and extend != "complex": |
|
with pytest.raises(ValueError, match="In order to use non-integer.*"): |
|
special.factorial2(n, **kw) |
|
elif n is None or np.isnan(n): |
|
|
|
complexify = (extend == "complex") and _is_subdtype(type(n), "c") |
|
expected = np.complex128("nan+nanj") if complexify else np.float64("nan") |
|
assert_really_equal(special.factorial2(n, **kw), expected) |
|
else: |
|
expected = self.factorialk_ref(n, k=2, **kw) |
|
assert_really_equal(special.factorial2(n, **kw), expected, rtol=1e-15) |
|
|
|
@pytest.mark.parametrize("k", range(1, 5)) |
|
|
|
|
|
@pytest.mark.parametrize('n', range(170, 20, -29)) |
|
def test_factorialk_accuracy(self, n, k): |
|
|
|
|
|
|
|
rtol = 6e-14 if sys.platform == 'win32' else 2e-14 |
|
|
|
assert_allclose(float(special.factorialk(n, k=k, exact=True)), |
|
special.factorialk(n, k=k, exact=False), rtol=rtol) |
|
assert_allclose(special.factorialk([n], k=k, exact=True).astype(float), |
|
special.factorialk([n], k=k, exact=False), rtol=rtol) |
|
|
|
@pytest.mark.parametrize('k', list(range(1, 5)) + [10, 20]) |
|
@pytest.mark.parametrize('n', |
|
list(range(0, 22)) + list(range(22, 100, 11))) |
|
def test_factorialk_int_reference(self, n, k): |
|
|
|
|
|
|
|
|
|
correct = functools.reduce(operator.mul, list(range(n, 0, -k)), 1) |
|
|
|
assert_array_equal(correct, special.factorialk(n, k, exact=True)) |
|
assert_array_equal(correct, special.factorialk([n], k, exact=True)[0]) |
|
|
|
rtol = 3e-14 if sys.platform == 'win32' else 1e-14 |
|
|
|
correct = float(correct) |
|
assert_allclose(correct, special.factorialk(n, k, exact=False), rtol=rtol) |
|
assert_allclose(correct, special.factorialk([n], k, exact=False)[0], rtol=rtol) |
|
|
|
|
|
kw = {"k": k, "exact": False, "extend": "complex"} |
|
|
|
if n % k == 1: |
|
rtol = 2e-14 |
|
assert_allclose(correct, special.factorialk(n, **kw), rtol=rtol) |
|
assert_allclose(correct, special.factorialk([n], **kw)[0], rtol=rtol) |
|
|
|
def test_factorialk_complex_reference(self): |
|
|
|
def _check(n, k, exp): |
|
rtol = 1e-14 |
|
kw = {"k": k, "exact": False, "extend": "complex"} |
|
assert_allclose(special.factorialk(n, **kw), exp, rtol=rtol) |
|
assert_allclose(special.factorialk([n], **kw)[0], exp, rtol=rtol) |
|
|
|
|
|
|
|
_check(n=4, k=3, exp=special.factorialk(4, k=3, exact=True)) |
|
_check(n=5, k=3, exp=7.29011132947227083) |
|
_check(n=6.5, k=3, exp=19.6805080113566010) |
|
|
|
_check(n=3, k=2.5, exp=2.58465740293218541) |
|
_check(n=11, k=2.5, exp=1963.5) |
|
_check(n=-3 + 3j + 1, k=-3 + 3j, exp=-2 + 3j) |
|
|
|
_check(n=4 + 4j, k=4, exp=-0.67855904082768043854 + 2.1993925819930311497j) |
|
_check(n=4, k=4 - 4j, exp=1.9775338957222718742 + 0.92607172675423901371j) |
|
_check(n=4 + 4j, k=4 - 4j, exp=0.1868492880824934475 + 0.87660580316894290247j) |
|
|
|
_check(n=-0.5, k=3, exp=0.72981013240713739354) |
|
_check(n=-0.5 + 0j, k=3, exp=0.72981013240713739354 + 0j) |
|
_check(n=2.9, k=-0.7, exp=0.45396591474966867296 + 0.56925525174685228866j) |
|
_check(n=-0.6, k=-0.7, exp=-0.07190820089634757334 - 0.090170031876701730081j) |
|
|
|
_check(n=-2.9999, k=3, exp=7764.7170695908828364) |
|
_check(n=-3 + 0.0001j, k=3, exp=0.1349475632879599864 - 7764.5821055158365027j) |
|
|
|
@pytest.mark.parametrize("dtype", [np.int64, np.float64, |
|
np.complex128, object]) |
|
@pytest.mark.parametrize("extend", ["zero", "complex"]) |
|
@pytest.mark.parametrize("exact", [True, False]) |
|
@pytest.mark.parametrize("dim", range(0, 5)) |
|
|
|
@pytest.mark.parametrize( |
|
"content", |
|
[[], [1], [1.1], [np.nan], [np.nan + np.nan * 1j], [np.nan, 1]], |
|
ids=["[]", "[1]", "[1.1]", "[NaN]", "[NaN+i*NaN]", "[NaN, 1]"], |
|
) |
|
def test_factorialk_array_corner_cases(self, content, dim, exact, extend, dtype): |
|
|
|
if dtype == np.int64 and any(np.isnan(x) or (x != int(x)) for x in content): |
|
pytest.skip("impossible combination") |
|
if dtype == np.float64 and any(_is_subdtype(type(x), "c") for x in content): |
|
pytest.skip("impossible combination") |
|
|
|
kw = {"k": 3, "exact": exact, "extend": extend} |
|
|
|
content = content if (dim > 0 or len(content) != 1) else content[0] |
|
n = np.array(content, ndmin=dim, dtype=dtype) |
|
|
|
result = None |
|
if extend == "complex" and exact: |
|
with pytest.raises(ValueError, match="Incompatible options:.*"): |
|
special.factorialk(n, **kw) |
|
elif not _is_subdtype(n.dtype, ["i", "f", "c"]): |
|
with pytest.raises(ValueError, match="Unsupported data type.*"): |
|
special.factorialk(n, **kw) |
|
elif _is_subdtype(n.dtype, ["f", "c"]) and extend != "complex": |
|
with pytest.raises(ValueError, match="In order to use non-integer.*"): |
|
special.factorialk(n, **kw) |
|
else: |
|
result = special.factorialk(n, **kw) |
|
|
|
if result is not None: |
|
|
|
ref = [special.factorialk(x, **kw) for x in n.ravel()] |
|
|
|
ref = ref[0] if len(ref) == 1 else ref |
|
|
|
|
|
if n.size: |
|
cx = (extend == "complex") and _is_subdtype(n.dtype, "c") |
|
dtype = np.complex128 if cx else (native_int if exact else np.float64) |
|
expected = np.array(ref, ndmin=dim, dtype=dtype) |
|
assert_really_equal(result, expected, rtol=2e-15) |
|
|
|
@pytest.mark.parametrize("extend", ["zero", "complex"]) |
|
@pytest.mark.parametrize("exact", [True, False]) |
|
@pytest.mark.parametrize("k", range(1, 5)) |
|
@pytest.mark.parametrize("n", [1, 1.1, 2 + 2j, np.nan, np.nan + np.nan*1j, None], |
|
ids=["1", "1.1", "2+2j", "NaN", "NaN+i*NaN", "None"]) |
|
def test_factorialk_scalar_corner_cases(self, n, k, exact, extend): |
|
kw = {"k": k, "exact": exact, "extend": extend} |
|
if extend == "complex" and exact: |
|
with pytest.raises(ValueError, match="Incompatible options:.*"): |
|
special.factorialk(n, **kw) |
|
elif not _is_subdtype(type(n), ["i", "f", "c", type(None)]): |
|
with pytest.raises(ValueError, match="Unsupported data type.*"): |
|
special.factorialk(n, **kw) |
|
elif _is_subdtype(type(n), ["f", "c"]) and extend != "complex": |
|
with pytest.raises(ValueError, match="In order to use non-integer.*"): |
|
special.factorialk(n, **kw) |
|
elif n is None or np.isnan(n): |
|
|
|
complexify = (extend == "complex") and _is_subdtype(type(n), "c") |
|
expected = np.complex128("nan+nanj") if complexify else np.float64("nan") |
|
assert_really_equal(special.factorialk(n, **kw), expected) |
|
else: |
|
expected = self.factorialk_ref(n, **kw) |
|
assert_really_equal(special.factorialk(n, **kw), expected, rtol=1e-15) |
|
|
|
@pytest.mark.parametrize("boxed", [True, False]) |
|
@pytest.mark.parametrize("exact,extend", |
|
[(True, "zero"), (False, "zero"), (False, "complex")]) |
|
@pytest.mark.parametrize("k", [-1, -1.0, 0, 0.0, 0 + 1j, 1.1, np.nan]) |
|
def test_factorialk_raises_k_complex(self, k, exact, extend, boxed): |
|
n = [1] if boxed else 1 |
|
kw = {"k": k, "exact": exact, "extend": extend} |
|
if extend == "zero": |
|
msg = "In order to use non-integer.*" |
|
if _is_subdtype(type(k), "i") and (k < 1): |
|
msg = "For `extend='zero'`.*" |
|
with pytest.raises(ValueError, match=msg): |
|
special.factorialk(n, **kw) |
|
elif k == 0: |
|
with pytest.raises(ValueError, match="Parameter k cannot be zero!"): |
|
special.factorialk(n, **kw) |
|
else: |
|
|
|
special.factorialk(n, **kw) |
|
|
|
@pytest.mark.parametrize("boxed", [True, False]) |
|
@pytest.mark.parametrize("exact,extend", |
|
[(True, "zero"), (False, "zero"), (False, "complex")]) |
|
|
|
@pytest.mark.parametrize("k", ["string", np.datetime64("nat")], |
|
ids=["string", "NaT"]) |
|
def test_factorialk_raises_k_other(self, k, exact, extend, boxed): |
|
n = [1] if boxed else 1 |
|
kw = {"k": k, "exact": exact, "extend": extend} |
|
with pytest.raises(ValueError, match="Unsupported data type.*"): |
|
special.factorialk(n, **kw) |
|
|
|
@pytest.mark.parametrize("exact,extend", |
|
[(True, "zero"), (False, "zero"), (False, "complex")]) |
|
@pytest.mark.parametrize("k", range(1, 12)) |
|
def test_factorialk_dtype(self, k, exact, extend): |
|
kw = {"k": k, "exact": exact, "extend": extend} |
|
if exact and k in _FACTORIALK_LIMITS_64BITS.keys(): |
|
n = np.array([_FACTORIALK_LIMITS_32BITS[k]]) |
|
assert_equal(special.factorialk(n, **kw).dtype, np_long) |
|
assert_equal(special.factorialk(n + 1, **kw).dtype, np.int64) |
|
|
|
assert special.factorialk(n + 1, **kw) > np.iinfo(np.int32).max |
|
|
|
n = np.array([_FACTORIALK_LIMITS_64BITS[k]]) |
|
assert_equal(special.factorialk(n, **kw).dtype, np.int64) |
|
assert_equal(special.factorialk(n + 1, **kw).dtype, object) |
|
assert special.factorialk(n + 1, **kw) > np.iinfo(np.int64).max |
|
else: |
|
n = np.array([_FACTORIALK_LIMITS_64BITS.get(k, 1)]) |
|
|
|
|
|
dtype = object if exact else np.float64 |
|
assert_equal(special.factorialk(n, **kw).dtype, dtype) |
|
|
|
def test_factorial_mixed_nan_inputs(self): |
|
x = np.array([np.nan, 1, 2, 3, np.nan]) |
|
expected = np.array([np.nan, 1, 2, 6, np.nan]) |
|
assert_equal(special.factorial(x, exact=False), expected) |
|
with pytest.raises(ValueError, match="`exact=True` only supports.*"): |
|
special.factorial(x, exact=True) |
|
|
|
|
|
class TestFresnel: |
|
@pytest.mark.parametrize("z, s, c", [ |
|
|
|
(.5, 0.064732432859999287, 0.49234422587144644), |
|
(.5 + .0j, 0.064732432859999287, 0.49234422587144644), |
|
|
|
|
|
|
|
|
|
|
|
( |
|
-2.0 + 0.1j, |
|
-0.3109538687728942-0.0005870728836383176j, |
|
-0.4879956866358554+0.10670801832903172j |
|
), |
|
( |
|
-0.1 - 1.5j, |
|
-0.03918309471866977+0.7197508454568574j, |
|
0.09605692502968956-0.43625191013617465j |
|
), |
|
|
|
|
|
|
|
(6.0, 0.44696076, 0.49953147), |
|
(6.0 + 0.0j, 0.44696076, 0.49953147), |
|
(6.0j, -0.44696076j, 0.49953147j), |
|
(-6.0 + 0.0j, -0.44696076, -0.49953147), |
|
(-6.0j, 0.44696076j, -0.49953147j), |
|
|
|
(np.inf, 0.5, 0.5), |
|
(-np.inf, -0.5, -0.5), |
|
]) |
|
def test_fresnel_values(self, z, s, c): |
|
frs = array(special.fresnel(z)) |
|
assert_array_almost_equal(frs, array([s, c]), 8) |
|
|
|
|
|
|
|
def test_fresnel_zeros(self): |
|
szo, czo = special.fresnel_zeros(5) |
|
assert_array_almost_equal(szo, |
|
array([2.0093+0.2885j, |
|
2.8335+0.2443j, |
|
3.4675+0.2185j, |
|
4.0026+0.2009j, |
|
4.4742+0.1877j]),3) |
|
assert_array_almost_equal(czo, |
|
array([1.7437+0.3057j, |
|
2.6515+0.2529j, |
|
3.3204+0.2240j, |
|
3.8757+0.2047j, |
|
4.3611+0.1907j]),3) |
|
vals1 = special.fresnel(szo)[0] |
|
vals2 = special.fresnel(czo)[1] |
|
assert_array_almost_equal(vals1,0,14) |
|
assert_array_almost_equal(vals2,0,14) |
|
|
|
def test_fresnelc_zeros(self): |
|
szo, czo = special.fresnel_zeros(6) |
|
frc = special.fresnelc_zeros(6) |
|
assert_array_almost_equal(frc,czo,12) |
|
|
|
def test_fresnels_zeros(self): |
|
szo, czo = special.fresnel_zeros(5) |
|
frs = special.fresnels_zeros(5) |
|
assert_array_almost_equal(frs,szo,12) |
|
|
|
|
|
class TestGamma: |
|
def test_gamma(self): |
|
gam = special.gamma(5) |
|
assert_equal(gam,24.0) |
|
|
|
def test_gammaln(self): |
|
gamln = special.gammaln(3) |
|
lngam = log(special.gamma(3)) |
|
assert_almost_equal(gamln,lngam,8) |
|
|
|
def test_gammainccinv(self): |
|
gccinv = special.gammainccinv(.5,.5) |
|
gcinv = special.gammaincinv(.5,.5) |
|
assert_almost_equal(gccinv,gcinv,8) |
|
|
|
@with_special_errors |
|
def test_gammaincinv(self): |
|
y = special.gammaincinv(.4,.4) |
|
x = special.gammainc(.4,y) |
|
assert_almost_equal(x,0.4,1) |
|
y = special.gammainc(10, 0.05) |
|
x = special.gammaincinv(10, 2.5715803516000736e-20) |
|
assert_almost_equal(0.05, x, decimal=10) |
|
assert_almost_equal(y, 2.5715803516000736e-20, decimal=10) |
|
x = special.gammaincinv(50, 8.20754777388471303050299243573393e-18) |
|
assert_almost_equal(11.0, x, decimal=10) |
|
|
|
@with_special_errors |
|
def test_975(self): |
|
|
|
|
|
|
|
pts = [0.25, |
|
np.nextafter(0.25, 0), 0.25 - 1e-12, |
|
np.nextafter(0.25, 1), 0.25 + 1e-12] |
|
for xp in pts: |
|
y = special.gammaincinv(.4, xp) |
|
x = special.gammainc(0.4, y) |
|
assert_allclose(x, xp, rtol=1e-12) |
|
|
|
def test_rgamma(self): |
|
rgam = special.rgamma(8) |
|
rlgam = 1/special.gamma(8) |
|
assert_almost_equal(rgam,rlgam,8) |
|
|
|
def test_infinity(self): |
|
assert_equal(special.rgamma(-1), 0) |
|
|
|
@pytest.mark.parametrize( |
|
"x,expected", |
|
[ |
|
|
|
([-np.inf, np.inf], [np.nan, np.inf]), |
|
|
|
([-0.0, 0.0], [-np.inf, np.inf]), |
|
|
|
(range(-32, 0), np.full(32, np.nan)), |
|
|
|
(range(-1024, -32, 99), np.full(11, np.nan)), |
|
|
|
([-4.141512231792294e+16], [np.nan]), |
|
] |
|
) |
|
def test_poles(self, x, expected): |
|
assert_array_equal(special.gamma(x), expected) |
|
|
|
|
|
class TestHankel: |
|
|
|
def test_negv1(self): |
|
assert_almost_equal(special.hankel1(-3,2), -special.hankel1(3,2), 14) |
|
|
|
def test_hankel1(self): |
|
hank1 = special.hankel1(1,.1) |
|
hankrl = (special.jv(1,.1) + special.yv(1,.1)*1j) |
|
assert_almost_equal(hank1,hankrl,8) |
|
|
|
def test_negv1e(self): |
|
assert_almost_equal(special.hankel1e(-3,2), -special.hankel1e(3,2), 14) |
|
|
|
def test_hankel1e(self): |
|
hank1e = special.hankel1e(1,.1) |
|
hankrle = special.hankel1(1,.1)*exp(-.1j) |
|
assert_almost_equal(hank1e,hankrle,8) |
|
|
|
def test_negv2(self): |
|
assert_almost_equal(special.hankel2(-3,2), -special.hankel2(3,2), 14) |
|
|
|
def test_hankel2(self): |
|
hank2 = special.hankel2(1,.1) |
|
hankrl2 = (special.jv(1,.1) - special.yv(1,.1)*1j) |
|
assert_almost_equal(hank2,hankrl2,8) |
|
|
|
def test_neg2e(self): |
|
assert_almost_equal(special.hankel2e(-3,2), -special.hankel2e(3,2), 14) |
|
|
|
def test_hankl2e(self): |
|
hank2e = special.hankel2e(1,.1) |
|
hankrl2e = special.hankel2e(1,.1) |
|
assert_almost_equal(hank2e,hankrl2e,8) |
|
|
|
def test_hankel2_gh4517(self): |
|
|
|
res = special.hankel2(0, 0) |
|
assert np.isnan(res.real) |
|
assert np.isposinf(res.imag) |
|
|
|
|
|
class TestHyper: |
|
def test_h1vp(self): |
|
h1 = special.h1vp(1,.1) |
|
h1real = (special.jvp(1,.1) + special.yvp(1,.1)*1j) |
|
assert_almost_equal(h1,h1real,8) |
|
|
|
def test_h2vp(self): |
|
h2 = special.h2vp(1,.1) |
|
h2real = (special.jvp(1,.1) - special.yvp(1,.1)*1j) |
|
assert_almost_equal(h2,h2real,8) |
|
|
|
def test_hyp0f1(self): |
|
|
|
assert_allclose(special.hyp0f1(2.5, 0.5), 1.21482702689997, rtol=1e-12) |
|
assert_allclose(special.hyp0f1(2.5, 0), 1.0, rtol=1e-15) |
|
|
|
|
|
x = special.hyp0f1(3.0, [-1.5, -1, 0, 1, 1.5]) |
|
expected = np.array([0.58493659229143, 0.70566805723127, 1.0, |
|
1.37789689539747, 1.60373685288480]) |
|
assert_allclose(x, expected, rtol=1e-12) |
|
|
|
|
|
x = special.hyp0f1(3.0, np.array([-1.5, -1, 0, 1, 1.5]) + 0.j) |
|
assert_allclose(x, expected.astype(complex), rtol=1e-12) |
|
|
|
|
|
x1 = [0.5, 1.5, 2.5] |
|
x2 = [0, 1, 0.5] |
|
x = special.hyp0f1(x1, x2) |
|
expected = [1.0, 1.8134302039235093, 1.21482702689997] |
|
assert_allclose(x, expected, rtol=1e-12) |
|
x = special.hyp0f1(np.vstack([x1] * 2), x2) |
|
assert_allclose(x, np.vstack([expected] * 2), rtol=1e-12) |
|
assert_raises(ValueError, special.hyp0f1, |
|
np.vstack([x1] * 3), [0, 1]) |
|
|
|
def test_hyp0f1_gh5764(self): |
|
|
|
|
|
res = special.hyp0f1(0.8, 0.5 + 0.5*1J) |
|
|
|
assert_almost_equal(res, 1.6139719776441115 + 1J*0.80893054061790665) |
|
|
|
def test_hyp1f1(self): |
|
hyp1 = special.hyp1f1(.1,.1,.3) |
|
assert_almost_equal(hyp1, 1.3498588075760032,7) |
|
|
|
|
|
|
|
|
|
|
|
|
|
ref_data = array([ |
|
[-8.38132975e+00, -1.28436461e+01, -2.91081397e+01, 1.04178330e+04], |
|
[2.91076882e+00, -6.35234333e+00, -1.27083993e+01, 6.68132725e+00], |
|
[-1.42938258e+01, 1.80869131e-01, 1.90038728e+01, 1.01385897e+05], |
|
[5.84069088e+00, 1.33187908e+01, 2.91290106e+01, 1.59469411e+08], |
|
[-2.70433202e+01, -1.16274873e+01, -2.89582384e+01, 1.39900152e+24], |
|
[4.26344966e+00, -2.32701773e+01, 1.91635759e+01, 6.13816915e+21], |
|
[1.20514340e+01, -3.40260240e+00, 7.26832235e+00, 1.17696112e+13], |
|
[2.77372955e+01, -1.99424687e+00, 3.61332246e+00, 3.07419615e+13], |
|
[1.50310939e+01, -2.91198675e+01, -1.53581080e+01, -3.79166033e+02], |
|
[1.43995827e+01, 9.84311196e+00, 1.93204553e+01, 2.55836264e+10], |
|
[-4.08759686e+00, 1.34437025e+01, -1.42072843e+01, 1.70778449e+01], |
|
[8.05595738e+00, -1.31019838e+01, 1.52180721e+01, 3.06233294e+21], |
|
[1.81815804e+01, -1.42908793e+01, 9.57868793e+00, -2.84771348e+20], |
|
[-2.49671396e+01, 1.25082843e+01, -1.71562286e+01, 2.36290426e+07], |
|
[2.67277673e+01, 1.70315414e+01, 6.12701450e+00, 7.77917232e+03], |
|
[2.49565476e+01, 2.91694684e+01, 6.29622660e+00, 2.35300027e+02], |
|
[6.11924542e+00, -1.59943768e+00, 9.57009289e+00, 1.32906326e+11], |
|
[-1.47863653e+01, 2.41691301e+01, -1.89981821e+01, 2.73064953e+03], |
|
[2.24070483e+01, -2.93647433e+00, 8.19281432e+00, -6.42000372e+17], |
|
[8.04042600e-01, 1.82710085e+01, -1.97814534e+01, 5.48372441e-01], |
|
[1.39590390e+01, 1.97318686e+01, 2.37606635e+00, 5.51923681e+00], |
|
[-4.66640483e+00, -2.00237930e+01, 7.40365095e+00, 4.50310752e+00], |
|
[2.76821999e+01, -6.36563968e+00, 1.11533984e+01, -9.28725179e+23], |
|
[-2.56764457e+01, 1.24544906e+00, 1.06407572e+01, 1.25922076e+01], |
|
[3.20447808e+00, 1.30874383e+01, 2.26098014e+01, 2.03202059e+04], |
|
[-1.24809647e+01, 4.15137113e+00, -2.92265700e+01, 2.39621411e+08], |
|
[2.14778108e+01, -2.35162960e+00, -1.13758664e+01, 4.46882152e-01], |
|
[-9.85469168e+00, -3.28157680e+00, 1.67447548e+01, -1.07342390e+07], |
|
[1.08122310e+01, -2.47353236e+01, -1.15622349e+01, -2.91733796e+03], |
|
[-2.67933347e+01, -3.39100709e+00, 2.56006986e+01, -5.29275382e+09], |
|
[-8.60066776e+00, -8.02200924e+00, 1.07231926e+01, 1.33548320e+06], |
|
[-1.01724238e-01, -1.18479709e+01, -2.55407104e+01, 1.55436570e+00], |
|
[-3.93356771e+00, 2.11106818e+01, -2.57598485e+01, 2.13467840e+01], |
|
[3.74750503e+00, 1.55687633e+01, -2.92841720e+01, 1.43873509e-02], |
|
[6.99726781e+00, 2.69855571e+01, -1.63707771e+01, 3.08098673e-02], |
|
[-2.31996011e+01, 3.47631054e+00, 9.75119815e-01, 1.79971073e-02], |
|
[2.38951044e+01, -2.91460190e+01, -2.50774708e+00, 9.56934814e+00], |
|
[1.52730825e+01, 5.77062507e+00, 1.21922003e+01, 1.32345307e+09], |
|
[1.74673917e+01, 1.89723426e+01, 4.94903250e+00, 9.90859484e+01], |
|
[1.88971241e+01, 2.86255413e+01, 5.52360109e-01, 1.44165360e+00], |
|
[1.02002319e+01, -1.66855152e+01, -2.55426235e+01, 6.56481554e+02], |
|
[-1.79474153e+01, 1.22210200e+01, -1.84058212e+01, 8.24041812e+05], |
|
[-1.36147103e+01, 1.32365492e+00, -7.22375200e+00, 9.92446491e+05], |
|
[7.57407832e+00, 2.59738234e+01, -1.34139168e+01, 3.64037761e-02], |
|
[2.21110169e+00, 1.28012666e+01, 1.62529102e+01, 1.33433085e+02], |
|
[-2.64297569e+01, -1.63176658e+01, -1.11642006e+01, -2.44797251e+13], |
|
[-2.46622944e+01, -3.02147372e+00, 8.29159315e+00, -3.21799070e+05], |
|
[-1.37215095e+01, -1.96680183e+01, 2.91940118e+01, 3.21457520e+12], |
|
[-5.45566105e+00, 2.81292086e+01, 1.72548215e-01, 9.66973000e-01], |
|
[-1.55751298e+00, -8.65703373e+00, 2.68622026e+01, -3.17190834e+16], |
|
[2.45393609e+01, -2.70571903e+01, 1.96815505e+01, 1.80708004e+37], |
|
[5.77482829e+00, 1.53203143e+01, 2.50534322e+01, 1.14304242e+06], |
|
[-1.02626819e+01, 2.36887658e+01, -2.32152102e+01, 7.28965646e+02], |
|
[-1.30833446e+00, -1.28310210e+01, 1.87275544e+01, -9.33487904e+12], |
|
[5.83024676e+00, -1.49279672e+01, 2.44957538e+01, -7.61083070e+27], |
|
[-2.03130747e+01, 2.59641715e+01, -2.06174328e+01, 4.54744859e+04], |
|
[1.97684551e+01, -2.21410519e+01, -2.26728740e+01, 3.53113026e+06], |
|
[2.73673444e+01, 2.64491725e+01, 1.57599882e+01, 1.07385118e+07], |
|
[5.73287971e+00, 1.21111904e+01, 1.33080171e+01, 2.63220467e+03], |
|
[-2.82751072e+01, 2.08605881e+01, 9.09838900e+00, -6.60957033e-07], |
|
[1.87270691e+01, -1.74437016e+01, 1.52413599e+01, 6.59572851e+27], |
|
[6.60681457e+00, -2.69449855e+00, 9.78972047e+00, -2.38587870e+12], |
|
[1.20895561e+01, -2.51355765e+01, 2.30096101e+01, 7.58739886e+32], |
|
[-2.44682278e+01, 2.10673441e+01, -1.36705538e+01, 4.54213550e+04], |
|
[-4.50665152e+00, 3.72292059e+00, -4.83403707e+00, 2.68938214e+01], |
|
[-7.46540049e+00, -1.08422222e+01, -1.72203805e+01, -2.09402162e+02], |
|
[-2.00307551e+01, -7.50604431e+00, -2.78640020e+01, 4.15985444e+19], |
|
[1.99890876e+01, 2.20677419e+01, -2.51301778e+01, 1.23840297e-09], |
|
[2.03183823e+01, -7.66942559e+00, 2.10340070e+01, 1.46285095e+31], |
|
[-2.90315825e+00, -2.55785967e+01, -9.58779316e+00, 2.65714264e-01], |
|
[2.73960829e+01, -1.80097203e+01, -2.03070131e+00, 2.52908999e+02], |
|
[-2.11708058e+01, -2.70304032e+01, 2.48257944e+01, 3.09027527e+08], |
|
[2.21959758e+01, 4.00258675e+00, -1.62853977e+01, -9.16280090e-09], |
|
[1.61661840e+01, -2.26845150e+01, 2.17226940e+01, -8.24774394e+33], |
|
[-3.35030306e+00, 1.32670581e+00, 9.39711214e+00, -1.47303163e+01], |
|
[7.23720726e+00, -2.29763909e+01, 2.34709682e+01, -9.20711735e+29], |
|
[2.71013568e+01, 1.61951087e+01, -7.11388906e-01, 2.98750911e-01], |
|
[8.40057933e+00, -7.49665220e+00, 2.95587388e+01, 6.59465635e+29], |
|
[-1.51603423e+01, 1.94032322e+01, -7.60044357e+00, 1.05186941e+02], |
|
[-8.83788031e+00, -2.72018313e+01, 1.88269907e+00, 1.81687019e+00], |
|
[-1.87283712e+01, 5.87479570e+00, -1.91210203e+01, 2.52235612e+08], |
|
[-5.61338513e-01, 2.69490237e+01, 1.16660111e-01, 9.97567783e-01], |
|
[-5.44354025e+00, -1.26721408e+01, -4.66831036e+00, 1.06660735e-01], |
|
[-2.18846497e+00, 2.33299566e+01, 9.62564397e+00, 3.03842061e-01], |
|
[6.65661299e+00, -2.39048713e+01, 1.04191807e+01, 4.73700451e+13], |
|
[-2.57298921e+01, -2.60811296e+01, 2.74398110e+01, -5.32566307e+11], |
|
[-1.11431826e+01, -1.59420160e+01, -1.84880553e+01, -1.01514747e+02], |
|
[6.50301931e+00, 2.59859051e+01, -2.33270137e+01, 1.22760500e-02], |
|
[-1.94987891e+01, -2.62123262e+01, 3.90323225e+00, 1.71658894e+01], |
|
[7.26164601e+00, -1.41469402e+01, 2.81499763e+01, -2.50068329e+31], |
|
[-1.52424040e+01, 2.99719005e+01, -2.85753678e+01, 1.31906693e+04], |
|
[5.24149291e+00, -1.72807223e+01, 2.22129493e+01, 2.50748475e+25], |
|
[3.63207230e-01, -9.54120862e-02, -2.83874044e+01, 9.43854939e-01], |
|
[-2.11326457e+00, -1.25707023e+01, 1.17172130e+00, 1.20812698e+00], |
|
[2.48513582e+00, 1.03652647e+01, -1.84625148e+01, 6.47910997e-02], |
|
[2.65395942e+01, 2.74794672e+01, 1.29413428e+01, 2.89306132e+05], |
|
[-9.49445460e+00, 1.59930921e+01, -1.49596331e+01, 3.27574841e+02], |
|
[-5.89173945e+00, 9.96742426e+00, 2.60318889e+01, -3.15842908e-01], |
|
[-1.15387239e+01, -2.21433107e+01, -2.17686413e+01, 1.56724718e-01], |
|
[-5.30592244e+00, -2.42752190e+01, 1.29734035e+00, 1.31985534e+00] |
|
]) |
|
|
|
for a,b,c,expected in ref_data: |
|
result = special.hyp1f1(a,b,c) |
|
assert_(abs(expected - result)/expected < 1e-4) |
|
|
|
def test_hyp1f1_gh2957(self): |
|
hyp1 = special.hyp1f1(0.5, 1.5, -709.7827128933) |
|
hyp2 = special.hyp1f1(0.5, 1.5, -709.7827128934) |
|
assert_almost_equal(hyp1, hyp2, 12) |
|
|
|
def test_hyp1f1_gh2282(self): |
|
hyp = special.hyp1f1(0.5, 1.5, -1000) |
|
assert_almost_equal(hyp, 0.028024956081989643, 12) |
|
|
|
def test_hyp2f1(self): |
|
|
|
values = [ |
|
[0.5, 1, 1.5, 0.2**2, 0.5/0.2*log((1+0.2)/(1-0.2))], |
|
[0.5, 1, 1.5, -0.2**2, 1./0.2*arctan(0.2)], |
|
[1, 1, 2, 0.2, -1/0.2*log(1-0.2)], |
|
[3, 3.5, 1.5, 0.2**2, 0.5/0.2/(-5)*((1+0.2)**(-5)-(1-0.2)**(-5))], |
|
[-3, 3, 0.5, sin(0.2)**2, cos(2*3*0.2)], |
|
[3, 4, 8, 1, |
|
special.gamma(8) * special.gamma(8-4-3) |
|
/ special.gamma(8-3) / special.gamma(8-4)], |
|
[3, 2, 3-2+1, -1, |
|
1./2**3*sqrt(pi) * special.gamma(1+3-2) |
|
/ special.gamma(1+0.5*3-2) / special.gamma(0.5+0.5*3)], |
|
[5, 2, 5-2+1, -1, |
|
1./2**5*sqrt(pi) * special.gamma(1+5-2) |
|
/ special.gamma(1+0.5*5-2) / special.gamma(0.5+0.5*5)], |
|
[4, 0.5+4, 1.5-2*4, -1./3, |
|
(8./9)**(-2*4)*special.gamma(4./3) * special.gamma(1.5-2*4) |
|
/ special.gamma(3./2) / special.gamma(4./3-2*4)], |
|
|
|
|
|
[1.5, -0.5, 1.0, -10.0, 4.1300097765277476484], |
|
|
|
[-2,3,1,0.95,0.715], |
|
[2,-3,1,0.95,-0.007], |
|
[-6,3,1,0.95,0.0000810625], |
|
[2,-5,1,0.95,-0.000029375], |
|
|
|
(10, -900, 10.5, 0.99, 1.91853705796607664803709475658e-24), |
|
(10, -900, -10.5, 0.99, 3.54279200040355710199058559155e-18), |
|
] |
|
for i, (a, b, c, x, v) in enumerate(values): |
|
cv = special.hyp2f1(a, b, c, x) |
|
assert_almost_equal(cv, v, 8, err_msg='test #%d' % i) |
|
|
|
def test_hyperu(self): |
|
val1 = special.hyperu(1,0.1,100) |
|
assert_almost_equal(val1,0.0098153,7) |
|
a,b = [0.3,0.6,1.2,-2.7],[1.5,3.2,-0.4,-3.2] |
|
a,b = asarray(a), asarray(b) |
|
z = 0.5 |
|
hypu = special.hyperu(a,b,z) |
|
hprl = (pi/sin(pi*b))*(special.hyp1f1(a,b,z) / |
|
(special.gamma(1+a-b)*special.gamma(b)) - |
|
z**(1-b)*special.hyp1f1(1+a-b,2-b,z) |
|
/ (special.gamma(a)*special.gamma(2-b))) |
|
assert_array_almost_equal(hypu,hprl,12) |
|
|
|
def test_hyperu_gh2287(self): |
|
assert_almost_equal(special.hyperu(1, 1.5, 20.2), |
|
0.048360918656699191, 12) |
|
|
|
|
|
class TestBessel: |
|
def test_itj0y0(self): |
|
it0 = array(special.itj0y0(.2)) |
|
assert_array_almost_equal( |
|
it0, |
|
array([0.19933433254006822, -0.34570883800412566]), |
|
8, |
|
) |
|
|
|
def test_it2j0y0(self): |
|
it2 = array(special.it2j0y0(.2)) |
|
assert_array_almost_equal( |
|
it2, |
|
array([0.0049937546274601858, -0.43423067011231614]), |
|
8, |
|
) |
|
|
|
def test_negv_iv(self): |
|
assert_equal(special.iv(3,2), special.iv(-3,2)) |
|
|
|
def test_j0(self): |
|
oz = special.j0(.1) |
|
ozr = special.jn(0,.1) |
|
assert_almost_equal(oz,ozr,8) |
|
|
|
def test_j1(self): |
|
o1 = special.j1(.1) |
|
o1r = special.jn(1,.1) |
|
assert_almost_equal(o1,o1r,8) |
|
|
|
def test_jn(self): |
|
jnnr = special.jn(1,.2) |
|
assert_almost_equal(jnnr,0.099500832639235995,8) |
|
|
|
def test_negv_jv(self): |
|
assert_almost_equal(special.jv(-3,2), -special.jv(3,2), 14) |
|
|
|
def test_jv(self): |
|
values = [[0, 0.1, 0.99750156206604002], |
|
[2./3, 1e-8, 0.3239028506761532e-5], |
|
[2./3, 1e-10, 0.1503423854873779e-6], |
|
[3.1, 1e-10, 0.1711956265409013e-32], |
|
[2./3, 4.0, -0.2325440850267039], |
|
] |
|
for i, (v, x, y) in enumerate(values): |
|
yc = special.jv(v, x) |
|
assert_almost_equal(yc, y, 8, err_msg='test #%d' % i) |
|
|
|
def test_negv_jve(self): |
|
assert_almost_equal(special.jve(-3,2), -special.jve(3,2), 14) |
|
|
|
def test_jve(self): |
|
jvexp = special.jve(1,.2) |
|
assert_almost_equal(jvexp,0.099500832639235995,8) |
|
jvexp1 = special.jve(1,.2+1j) |
|
z = .2+1j |
|
jvexpr = special.jv(1,z)*exp(-abs(z.imag)) |
|
assert_almost_equal(jvexp1,jvexpr,8) |
|
|
|
def test_jn_zeros(self): |
|
jn0 = special.jn_zeros(0,5) |
|
jn1 = special.jn_zeros(1,5) |
|
assert_array_almost_equal(jn0,array([2.4048255577, |
|
5.5200781103, |
|
8.6537279129, |
|
11.7915344391, |
|
14.9309177086]),4) |
|
assert_array_almost_equal(jn1,array([3.83171, |
|
7.01559, |
|
10.17347, |
|
13.32369, |
|
16.47063]),4) |
|
|
|
jn102 = special.jn_zeros(102,5) |
|
assert_allclose(jn102, array([110.89174935992040343, |
|
117.83464175788308398, |
|
123.70194191713507279, |
|
129.02417238949092824, |
|
134.00114761868422559]), rtol=1e-13) |
|
|
|
jn301 = special.jn_zeros(301,5) |
|
assert_allclose(jn301, array([313.59097866698830153, |
|
323.21549776096288280, |
|
331.22338738656748796, |
|
338.39676338872084500, |
|
345.03284233056064157]), rtol=1e-13) |
|
|
|
def test_jn_zeros_slow(self): |
|
jn0 = special.jn_zeros(0, 300) |
|
assert_allclose(jn0[260-1], 816.02884495068867280, rtol=1e-13) |
|
assert_allclose(jn0[280-1], 878.86068707124422606, rtol=1e-13) |
|
assert_allclose(jn0[300-1], 941.69253065317954064, rtol=1e-13) |
|
|
|
jn10 = special.jn_zeros(10, 300) |
|
assert_allclose(jn10[260-1], 831.67668514305631151, rtol=1e-13) |
|
assert_allclose(jn10[280-1], 894.51275095371316931, rtol=1e-13) |
|
assert_allclose(jn10[300-1], 957.34826370866539775, rtol=1e-13) |
|
|
|
jn3010 = special.jn_zeros(3010,5) |
|
assert_allclose(jn3010, array([3036.86590780927, |
|
3057.06598526482, |
|
3073.66360690272, |
|
3088.37736494778, |
|
3101.86438139042]), rtol=1e-8) |
|
|
|
def test_jnjnp_zeros(self): |
|
jn = special.jn |
|
|
|
def jnp(n, x): |
|
return (jn(n-1,x) - jn(n+1,x))/2 |
|
for nt in range(1, 30): |
|
z, n, m, t = special.jnjnp_zeros(nt) |
|
for zz, nn, tt in zip(z, n, t): |
|
if tt == 0: |
|
assert_allclose(jn(nn, zz), 0, atol=1e-6) |
|
elif tt == 1: |
|
assert_allclose(jnp(nn, zz), 0, atol=1e-6) |
|
else: |
|
raise AssertionError("Invalid t return for nt=%d" % nt) |
|
|
|
def test_jnp_zeros(self): |
|
jnp = special.jnp_zeros(1,5) |
|
assert_array_almost_equal(jnp, array([1.84118, |
|
5.33144, |
|
8.53632, |
|
11.70600, |
|
14.86359]),4) |
|
jnp = special.jnp_zeros(443,5) |
|
assert_allclose(special.jvp(443, jnp), 0, atol=1e-15) |
|
|
|
def test_jnyn_zeros(self): |
|
jnz = special.jnyn_zeros(1,5) |
|
assert_array_almost_equal(jnz,(array([3.83171, |
|
7.01559, |
|
10.17347, |
|
13.32369, |
|
16.47063]), |
|
array([1.84118, |
|
5.33144, |
|
8.53632, |
|
11.70600, |
|
14.86359]), |
|
array([2.19714, |
|
5.42968, |
|
8.59601, |
|
11.74915, |
|
14.89744]), |
|
array([3.68302, |
|
6.94150, |
|
10.12340, |
|
13.28576, |
|
16.44006])),5) |
|
|
|
def test_jvp(self): |
|
jvprim = special.jvp(2,2) |
|
jv0 = (special.jv(1,2)-special.jv(3,2))/2 |
|
assert_almost_equal(jvprim,jv0,10) |
|
|
|
def test_k0(self): |
|
ozk = special.k0(.1) |
|
ozkr = special.kv(0,.1) |
|
assert_almost_equal(ozk,ozkr,8) |
|
|
|
def test_k0e(self): |
|
ozke = special.k0e(.1) |
|
ozker = special.kve(0,.1) |
|
assert_almost_equal(ozke,ozker,8) |
|
|
|
def test_k1(self): |
|
o1k = special.k1(.1) |
|
o1kr = special.kv(1,.1) |
|
assert_almost_equal(o1k,o1kr,8) |
|
|
|
def test_k1e(self): |
|
o1ke = special.k1e(.1) |
|
o1ker = special.kve(1,.1) |
|
assert_almost_equal(o1ke,o1ker,8) |
|
|
|
def test_jacobi(self): |
|
a = 5*np.random.random() - 1 |
|
b = 5*np.random.random() - 1 |
|
P0 = special.jacobi(0,a,b) |
|
P1 = special.jacobi(1,a,b) |
|
P2 = special.jacobi(2,a,b) |
|
P3 = special.jacobi(3,a,b) |
|
|
|
assert_array_almost_equal(P0.c,[1],13) |
|
assert_array_almost_equal(P1.c,array([a+b+2,a-b])/2.0,13) |
|
cp = [(a+b+3)*(a+b+4), 4*(a+b+3)*(a+2), 4*(a+1)*(a+2)] |
|
p2c = [cp[0],cp[1]-2*cp[0],cp[2]-cp[1]+cp[0]] |
|
assert_array_almost_equal(P2.c,array(p2c)/8.0,13) |
|
cp = [(a+b+4)*(a+b+5)*(a+b+6),6*(a+b+4)*(a+b+5)*(a+3), |
|
12*(a+b+4)*(a+2)*(a+3),8*(a+1)*(a+2)*(a+3)] |
|
p3c = [cp[0],cp[1]-3*cp[0],cp[2]-2*cp[1]+3*cp[0],cp[3]-cp[2]+cp[1]-cp[0]] |
|
assert_array_almost_equal(P3.c,array(p3c)/48.0,13) |
|
|
|
def test_kn(self): |
|
kn1 = special.kn(0,.2) |
|
assert_almost_equal(kn1,1.7527038555281462,8) |
|
|
|
def test_negv_kv(self): |
|
assert_equal(special.kv(3.0, 2.2), special.kv(-3.0, 2.2)) |
|
|
|
def test_kv0(self): |
|
kv0 = special.kv(0,.2) |
|
assert_almost_equal(kv0, 1.7527038555281462, 10) |
|
|
|
def test_kv1(self): |
|
kv1 = special.kv(1,0.2) |
|
assert_almost_equal(kv1, 4.775972543220472, 10) |
|
|
|
def test_kv2(self): |
|
kv2 = special.kv(2,0.2) |
|
assert_almost_equal(kv2, 49.51242928773287, 10) |
|
|
|
def test_kn_largeorder(self): |
|
assert_allclose(special.kn(32, 1), 1.7516596664574289e+43) |
|
|
|
def test_kv_largearg(self): |
|
assert_equal(special.kv(0, 1e19), 0) |
|
|
|
def test_negv_kve(self): |
|
assert_equal(special.kve(3.0, 2.2), special.kve(-3.0, 2.2)) |
|
|
|
def test_kve(self): |
|
kve1 = special.kve(0,.2) |
|
kv1 = special.kv(0,.2)*exp(.2) |
|
assert_almost_equal(kve1,kv1,8) |
|
z = .2+1j |
|
kve2 = special.kve(0,z) |
|
kv2 = special.kv(0,z)*exp(z) |
|
assert_almost_equal(kve2,kv2,8) |
|
|
|
def test_kvp_v0n1(self): |
|
z = 2.2 |
|
assert_almost_equal(-special.kv(1,z), special.kvp(0,z, n=1), 10) |
|
|
|
def test_kvp_n1(self): |
|
v = 3. |
|
z = 2.2 |
|
xc = -special.kv(v+1,z) + v/z*special.kv(v,z) |
|
x = special.kvp(v,z, n=1) |
|
assert_almost_equal(xc, x, 10) |
|
|
|
def test_kvp_n2(self): |
|
v = 3. |
|
z = 2.2 |
|
xc = (z**2+v**2-v)/z**2 * special.kv(v,z) + special.kv(v+1,z)/z |
|
x = special.kvp(v, z, n=2) |
|
assert_almost_equal(xc, x, 10) |
|
|
|
def test_y0(self): |
|
oz = special.y0(.1) |
|
ozr = special.yn(0,.1) |
|
assert_almost_equal(oz,ozr,8) |
|
|
|
def test_y1(self): |
|
o1 = special.y1(.1) |
|
o1r = special.yn(1,.1) |
|
assert_almost_equal(o1,o1r,8) |
|
|
|
def test_y0_zeros(self): |
|
yo,ypo = special.y0_zeros(2) |
|
zo,zpo = special.y0_zeros(2,complex=1) |
|
all = r_[yo,zo] |
|
allval = r_[ypo,zpo] |
|
assert_array_almost_equal(abs(special.yv(0.0,all)),0.0,11) |
|
assert_array_almost_equal(abs(special.yv(1,all)-allval),0.0,11) |
|
|
|
def test_y1_zeros(self): |
|
y1 = special.y1_zeros(1) |
|
assert_array_almost_equal(y1,(array([2.19714]),array([0.52079])),5) |
|
|
|
def test_y1p_zeros(self): |
|
y1p = special.y1p_zeros(1,complex=1) |
|
assert_array_almost_equal( |
|
y1p, |
|
(array([0.5768+0.904j]), array([-0.7635+0.5892j])), |
|
3, |
|
) |
|
|
|
def test_yn_zeros(self): |
|
an = special.yn_zeros(4,2) |
|
assert_array_almost_equal(an,array([5.64515, 9.36162]),5) |
|
an = special.yn_zeros(443,5) |
|
assert_allclose(an, [450.13573091578090314, |
|
463.05692376675001542, |
|
472.80651546418663566, |
|
481.27353184725625838, |
|
488.98055964441374646], |
|
rtol=1e-15,) |
|
|
|
def test_ynp_zeros(self): |
|
ao = special.ynp_zeros(0,2) |
|
assert_array_almost_equal(ao,array([2.19714133, 5.42968104]),6) |
|
ao = special.ynp_zeros(43,5) |
|
assert_allclose(special.yvp(43, ao), 0, atol=1e-15) |
|
ao = special.ynp_zeros(443,5) |
|
assert_allclose(special.yvp(443, ao), 0, atol=1e-9) |
|
|
|
def test_ynp_zeros_large_order(self): |
|
ao = special.ynp_zeros(443,5) |
|
assert_allclose(special.yvp(443, ao), 0, atol=1e-14) |
|
|
|
def test_yn(self): |
|
yn2n = special.yn(1,.2) |
|
assert_almost_equal(yn2n,-3.3238249881118471,8) |
|
|
|
def test_yn_gh_20405(self): |
|
|
|
observed = cephes.yn(500, 1) |
|
assert observed == -np.inf |
|
|
|
def test_negv_yv(self): |
|
assert_almost_equal(special.yv(-3,2), -special.yv(3,2), 14) |
|
|
|
def test_yv(self): |
|
yv2 = special.yv(1,.2) |
|
assert_almost_equal(yv2,-3.3238249881118471,8) |
|
|
|
def test_negv_yve(self): |
|
assert_almost_equal(special.yve(-3,2), -special.yve(3,2), 14) |
|
|
|
def test_yve(self): |
|
yve2 = special.yve(1,.2) |
|
assert_almost_equal(yve2,-3.3238249881118471,8) |
|
yve2r = special.yv(1,.2+1j)*exp(-1) |
|
yve22 = special.yve(1,.2+1j) |
|
assert_almost_equal(yve22,yve2r,8) |
|
|
|
def test_yvp(self): |
|
yvpr = (special.yv(1,.2) - special.yv(3,.2))/2.0 |
|
yvp1 = special.yvp(2,.2) |
|
assert_array_almost_equal(yvp1,yvpr,10) |
|
|
|
def _cephes_vs_amos_points(self): |
|
"""Yield points at which to compare Cephes implementation to AMOS""" |
|
|
|
v = [-120, -100.3, -20., -10., -1., -.5, 0., 1., 12.49, 120., 301] |
|
z = [-1300, -11, -10, -1, 1., 10., 200.5, 401., 600.5, 700.6, 1300, |
|
10003] |
|
yield from itertools.product(v, z) |
|
|
|
|
|
|
|
yield from itertools.product(0.5 + arange(-60, 60), [3.5]) |
|
|
|
def check_cephes_vs_amos(self, f1, f2, rtol=1e-11, atol=0, skip=None): |
|
for v, z in self._cephes_vs_amos_points(): |
|
if skip is not None and skip(v, z): |
|
continue |
|
c1, c2, c3 = f1(v, z), f1(v,z+0j), f2(int(v), z) |
|
if np.isinf(c1): |
|
assert_(np.abs(c2) >= 1e300, (v, z)) |
|
elif np.isnan(c1): |
|
assert_(c2.imag != 0, (v, z)) |
|
else: |
|
assert_allclose(c1, c2, err_msg=(v, z), rtol=rtol, atol=atol) |
|
if v == int(v): |
|
assert_allclose(c3, c2, err_msg=(v, z), |
|
rtol=rtol, atol=atol) |
|
|
|
@pytest.mark.xfail(platform.machine() == 'ppc64le', |
|
reason="fails on ppc64le") |
|
def test_jv_cephes_vs_amos(self): |
|
self.check_cephes_vs_amos(special.jv, special.jn, rtol=1e-10, atol=1e-305) |
|
|
|
@pytest.mark.xfail(platform.machine() == 'ppc64le', |
|
reason="fails on ppc64le") |
|
def test_yv_cephes_vs_amos(self): |
|
self.check_cephes_vs_amos(special.yv, special.yn, rtol=1e-11, atol=1e-305) |
|
|
|
def test_yv_cephes_vs_amos_only_small_orders(self): |
|
def skipper(v, z): |
|
return abs(v) > 50 |
|
self.check_cephes_vs_amos(special.yv, special.yn, rtol=1e-11, atol=1e-305, |
|
skip=skipper) |
|
|
|
def test_iv_cephes_vs_amos(self): |
|
with np.errstate(all='ignore'): |
|
self.check_cephes_vs_amos(special.iv, special.iv, rtol=5e-9, atol=1e-305) |
|
|
|
@pytest.mark.slow |
|
def test_iv_cephes_vs_amos_mass_test(self): |
|
N = 1000000 |
|
np.random.seed(1) |
|
v = np.random.pareto(0.5, N) * (-1)**np.random.randint(2, size=N) |
|
x = np.random.pareto(0.2, N) * (-1)**np.random.randint(2, size=N) |
|
|
|
imsk = (np.random.randint(8, size=N) == 0) |
|
v[imsk] = v[imsk].astype(np.int64) |
|
|
|
with np.errstate(all='ignore'): |
|
c1 = special.iv(v, x) |
|
c2 = special.iv(v, x+0j) |
|
|
|
|
|
c1[abs(c1) > 1e300] = np.inf |
|
c2[abs(c2) > 1e300] = np.inf |
|
c1[abs(c1) < 1e-300] = 0 |
|
c2[abs(c2) < 1e-300] = 0 |
|
|
|
dc = abs(c1/c2 - 1) |
|
dc[np.isnan(dc)] = 0 |
|
|
|
k = np.argmax(dc) |
|
|
|
|
|
|
|
assert_( |
|
dc[k] < 2e-7, |
|
(v[k], x[k], special.iv(v[k], x[k]), special.iv(v[k], x[k]+0j)) |
|
) |
|
|
|
def test_kv_cephes_vs_amos(self): |
|
self.check_cephes_vs_amos(special.kv, special.kn, rtol=1e-9, atol=1e-305) |
|
self.check_cephes_vs_amos(special.kv, special.kv, rtol=1e-9, atol=1e-305) |
|
|
|
def test_ticket_623(self): |
|
assert_allclose(special.jv(3, 4), 0.43017147387562193) |
|
assert_allclose(special.jv(301, 1300), 0.0183487151115275) |
|
assert_allclose(special.jv(301, 1296.0682), -0.0224174325312048) |
|
|
|
def test_ticket_853(self): |
|
"""Negative-order Bessels""" |
|
|
|
assert_allclose(special.jv(-1, 1), -0.4400505857449335) |
|
assert_allclose(special.jv(-2, 1), 0.1149034849319005) |
|
assert_allclose(special.yv(-1, 1), 0.7812128213002887) |
|
assert_allclose(special.yv(-2, 1), -1.650682606816255) |
|
assert_allclose(special.iv(-1, 1), 0.5651591039924851) |
|
assert_allclose(special.iv(-2, 1), 0.1357476697670383) |
|
assert_allclose(special.kv(-1, 1), 0.6019072301972347) |
|
assert_allclose(special.kv(-2, 1), 1.624838898635178) |
|
assert_allclose(special.jv(-0.5, 1), 0.43109886801837607952) |
|
assert_allclose(special.yv(-0.5, 1), 0.6713967071418031) |
|
assert_allclose(special.iv(-0.5, 1), 1.231200214592967) |
|
assert_allclose(special.kv(-0.5, 1), 0.4610685044478945) |
|
|
|
assert_allclose(special.jv(-1, 1+0j), -0.4400505857449335) |
|
assert_allclose(special.jv(-2, 1+0j), 0.1149034849319005) |
|
assert_allclose(special.yv(-1, 1+0j), 0.7812128213002887) |
|
assert_allclose(special.yv(-2, 1+0j), -1.650682606816255) |
|
|
|
assert_allclose(special.iv(-1, 1+0j), 0.5651591039924851) |
|
assert_allclose(special.iv(-2, 1+0j), 0.1357476697670383) |
|
assert_allclose(special.kv(-1, 1+0j), 0.6019072301972347) |
|
assert_allclose(special.kv(-2, 1+0j), 1.624838898635178) |
|
|
|
assert_allclose(special.jv(-0.5, 1+0j), 0.43109886801837607952) |
|
assert_allclose(special.jv(-0.5, 1+1j), 0.2628946385649065-0.827050182040562j) |
|
assert_allclose(special.yv(-0.5, 1+0j), 0.6713967071418031) |
|
assert_allclose(special.yv(-0.5, 1+1j), 0.967901282890131+0.0602046062142816j) |
|
|
|
assert_allclose(special.iv(-0.5, 1+0j), 1.231200214592967) |
|
assert_allclose(special.iv(-0.5, 1+1j), 0.77070737376928+0.39891821043561j) |
|
assert_allclose(special.kv(-0.5, 1+0j), 0.4610685044478945) |
|
assert_allclose(special.kv(-0.5, 1+1j), 0.06868578341999-0.38157825981268j) |
|
|
|
assert_allclose(special.jve(-0.5,1+0.3j), special.jv(-0.5, 1+0.3j)*exp(-0.3)) |
|
assert_allclose(special.yve(-0.5,1+0.3j), special.yv(-0.5, 1+0.3j)*exp(-0.3)) |
|
assert_allclose(special.ive(-0.5,0.3+1j), special.iv(-0.5, 0.3+1j)*exp(-0.3)) |
|
assert_allclose(special.kve(-0.5,0.3+1j), special.kv(-0.5, 0.3+1j)*exp(0.3+1j)) |
|
|
|
assert_allclose( |
|
special.hankel1(-0.5, 1+1j), |
|
special.jv(-0.5, 1+1j) + 1j*special.yv(-0.5,1+1j) |
|
) |
|
assert_allclose( |
|
special.hankel2(-0.5, 1+1j), |
|
special.jv(-0.5, 1+1j) - 1j*special.yv(-0.5,1+1j) |
|
) |
|
|
|
def test_ticket_854(self): |
|
"""Real-valued Bessel domains""" |
|
assert_(isnan(special.jv(0.5, -1))) |
|
assert_(isnan(special.iv(0.5, -1))) |
|
assert_(isnan(special.yv(0.5, -1))) |
|
assert_(isnan(special.yv(1, -1))) |
|
assert_(isnan(special.kv(0.5, -1))) |
|
assert_(isnan(special.kv(1, -1))) |
|
assert_(isnan(special.jve(0.5, -1))) |
|
assert_(isnan(special.ive(0.5, -1))) |
|
assert_(isnan(special.yve(0.5, -1))) |
|
assert_(isnan(special.yve(1, -1))) |
|
assert_(isnan(special.kve(0.5, -1))) |
|
assert_(isnan(special.kve(1, -1))) |
|
assert_(isnan(special.airye(-1)[0:2]).all(), special.airye(-1)) |
|
assert_(not isnan(special.airye(-1)[2:4]).any(), special.airye(-1)) |
|
|
|
def test_gh_7909(self): |
|
assert_(special.kv(1.5, 0) == np.inf) |
|
assert_(special.kve(1.5, 0) == np.inf) |
|
|
|
def test_ticket_503(self): |
|
"""Real-valued Bessel I overflow""" |
|
assert_allclose(special.iv(1, 700), 1.528500390233901e302) |
|
assert_allclose(special.iv(1000, 1120), 1.301564549405821e301) |
|
|
|
def test_iv_hyperg_poles(self): |
|
assert_allclose(special.iv(-0.5, 1), 1.231200214592967) |
|
|
|
def iv_series(self, v, z, n=200): |
|
k = arange(0, n).astype(double) |
|
r = (v+2*k)*log(.5*z) - special.gammaln(k+1) - special.gammaln(v+k+1) |
|
r[isnan(r)] = inf |
|
r = exp(r) |
|
err = abs(r).max() * finfo(double).eps * n + abs(r[-1])*10 |
|
return r.sum(), err |
|
|
|
def test_i0_series(self): |
|
for z in [1., 10., 200.5]: |
|
value, err = self.iv_series(0, z) |
|
assert_allclose(special.i0(z), value, atol=err, err_msg=z) |
|
|
|
def test_i1_series(self): |
|
for z in [1., 10., 200.5]: |
|
value, err = self.iv_series(1, z) |
|
assert_allclose(special.i1(z), value, atol=err, err_msg=z) |
|
|
|
def test_iv_series(self): |
|
for v in [-20., -10., -1., 0., 1., 12.49, 120.]: |
|
for z in [1., 10., 200.5, -1+2j]: |
|
value, err = self.iv_series(v, z) |
|
assert_allclose(special.iv(v, z), value, atol=err, err_msg=(v, z)) |
|
|
|
def test_i0(self): |
|
values = [[0.0, 1.0], |
|
[1e-10, 1.0], |
|
[0.1, 0.9071009258], |
|
[0.5, 0.6450352706], |
|
[1.0, 0.4657596077], |
|
[2.5, 0.2700464416], |
|
[5.0, 0.1835408126], |
|
[20.0, 0.0897803119], |
|
] |
|
for i, (x, v) in enumerate(values): |
|
cv = special.i0(x) * exp(-x) |
|
assert_almost_equal(cv, v, 8, err_msg='test #%d' % i) |
|
|
|
def test_i0e(self): |
|
oize = special.i0e(.1) |
|
oizer = special.ive(0,.1) |
|
assert_almost_equal(oize,oizer,8) |
|
|
|
def test_i1(self): |
|
values = [[0.0, 0.0], |
|
[1e-10, 0.4999999999500000e-10], |
|
[0.1, 0.0452984468], |
|
[0.5, 0.1564208032], |
|
[1.0, 0.2079104154], |
|
[5.0, 0.1639722669], |
|
[20.0, 0.0875062222], |
|
] |
|
for i, (x, v) in enumerate(values): |
|
cv = special.i1(x) * exp(-x) |
|
assert_almost_equal(cv, v, 8, err_msg='test #%d' % i) |
|
|
|
def test_i1e(self): |
|
oi1e = special.i1e(.1) |
|
oi1er = special.ive(1,.1) |
|
assert_almost_equal(oi1e,oi1er,8) |
|
|
|
def test_iti0k0(self): |
|
iti0 = array(special.iti0k0(5)) |
|
assert_array_almost_equal( |
|
iti0, |
|
array([31.848667776169801, 1.5673873907283657]), |
|
5, |
|
) |
|
|
|
def test_it2i0k0(self): |
|
it2k = special.it2i0k0(.1) |
|
assert_array_almost_equal( |
|
it2k, |
|
array([0.0012503906973464409, 3.3309450354686687]), |
|
6, |
|
) |
|
|
|
def test_iv(self): |
|
iv1 = special.iv(0,.1)*exp(-.1) |
|
assert_almost_equal(iv1,0.90710092578230106,10) |
|
|
|
def test_negv_ive(self): |
|
assert_equal(special.ive(3,2), special.ive(-3,2)) |
|
|
|
def test_ive(self): |
|
ive1 = special.ive(0,.1) |
|
iv1 = special.iv(0,.1)*exp(-.1) |
|
assert_almost_equal(ive1,iv1,10) |
|
|
|
def test_ivp0(self): |
|
assert_almost_equal(special.iv(1,2), special.ivp(0,2), 10) |
|
|
|
def test_ivp(self): |
|
y = (special.iv(0,2) + special.iv(2,2))/2 |
|
x = special.ivp(1,2) |
|
assert_almost_equal(x,y,10) |
|
|
|
|
|
class TestLaguerre: |
|
def test_laguerre(self): |
|
lag0 = special.laguerre(0) |
|
lag1 = special.laguerre(1) |
|
lag2 = special.laguerre(2) |
|
lag3 = special.laguerre(3) |
|
lag4 = special.laguerre(4) |
|
lag5 = special.laguerre(5) |
|
assert_array_almost_equal(lag0.c,[1],13) |
|
assert_array_almost_equal(lag1.c,[-1,1],13) |
|
assert_array_almost_equal(lag2.c,array([1,-4,2])/2.0,13) |
|
assert_array_almost_equal(lag3.c,array([-1,9,-18,6])/6.0,13) |
|
assert_array_almost_equal(lag4.c,array([1,-16,72,-96,24])/24.0,13) |
|
assert_array_almost_equal(lag5.c,array([-1,25,-200,600,-600,120])/120.0,13) |
|
|
|
def test_genlaguerre(self): |
|
k = 5*np.random.random() - 0.9 |
|
lag0 = special.genlaguerre(0,k) |
|
lag1 = special.genlaguerre(1,k) |
|
lag2 = special.genlaguerre(2,k) |
|
lag3 = special.genlaguerre(3,k) |
|
assert_equal(lag0.c, [1]) |
|
assert_equal(lag1.c, [-1, k + 1]) |
|
assert_almost_equal( |
|
lag2.c, |
|
array([1,-2*(k+2),(k+1.)*(k+2.)])/2.0 |
|
) |
|
assert_almost_equal( |
|
lag3.c, |
|
array([-1,3*(k+3),-3*(k+2)*(k+3),(k+1)*(k+2)*(k+3)])/6.0 |
|
) |
|
|
|
|
|
class TestLambda: |
|
def test_lmbda(self): |
|
lam = special.lmbda(1,.1) |
|
lamr = ( |
|
array([special.jn(0,.1), 2*special.jn(1,.1)/.1]), |
|
array([special.jvp(0,.1), -2*special.jv(1,.1)/.01 + 2*special.jvp(1,.1)/.1]) |
|
) |
|
assert_array_almost_equal(lam,lamr,8) |
|
|
|
|
|
class TestLog1p: |
|
def test_log1p(self): |
|
l1p = (special.log1p(10), special.log1p(11), special.log1p(12)) |
|
l1prl = (log(11), log(12), log(13)) |
|
assert_array_almost_equal(l1p,l1prl,8) |
|
|
|
def test_log1pmore(self): |
|
l1pm = (special.log1p(1), special.log1p(1.1), special.log1p(1.2)) |
|
l1pmrl = (log(2),log(2.1),log(2.2)) |
|
assert_array_almost_equal(l1pm,l1pmrl,8) |
|
|
|
|
|
class TestMathieu: |
|
|
|
def test_mathieu_a(self): |
|
pass |
|
|
|
def test_mathieu_even_coef(self): |
|
special.mathieu_even_coef(2,5) |
|
|
|
|
|
def test_mathieu_odd_coef(self): |
|
|
|
pass |
|
|
|
|
|
class TestFresnelIntegral: |
|
|
|
def test_modfresnelp(self): |
|
pass |
|
|
|
def test_modfresnelm(self): |
|
pass |
|
|
|
|
|
class TestOblCvSeq: |
|
def test_obl_cv_seq(self): |
|
obl = special.obl_cv_seq(0,3,1) |
|
assert_array_almost_equal(obl,array([-0.348602, |
|
1.393206, |
|
5.486800, |
|
11.492120]),5) |
|
|
|
|
|
class TestParabolicCylinder: |
|
def test_pbdn_seq(self): |
|
pb = special.pbdn_seq(1,.1) |
|
assert_array_almost_equal(pb,(array([0.9975, |
|
0.0998]), |
|
array([-0.0499, |
|
0.9925])),4) |
|
|
|
def test_pbdv(self): |
|
special.pbdv(1,.2) |
|
1/2*(.2)*special.pbdv(1,.2)[0] - special.pbdv(0,.2)[0] |
|
|
|
def test_pbdv_seq(self): |
|
pbn = special.pbdn_seq(1,.1) |
|
pbv = special.pbdv_seq(1,.1) |
|
assert_array_almost_equal(pbv,(real(pbn[0]),real(pbn[1])),4) |
|
|
|
def test_pbdv_points(self): |
|
|
|
eta = np.linspace(-10, 10, 5) |
|
z = 2**(eta/2)*np.sqrt(np.pi)*special.rgamma(.5-.5*eta) |
|
assert_allclose(special.pbdv(eta, 0.)[0], z, rtol=1e-14, atol=1e-14) |
|
|
|
|
|
assert_allclose(special.pbdv(10.34, 20.44)[0], 1.3731383034455e-32, rtol=1e-12) |
|
assert_allclose(special.pbdv(-9.53, 3.44)[0], 3.166735001119246e-8, rtol=1e-12) |
|
|
|
def test_pbdv_gradient(self): |
|
x = np.linspace(-4, 4, 8)[:,None] |
|
eta = np.linspace(-10, 10, 5)[None,:] |
|
|
|
p = special.pbdv(eta, x) |
|
eps = 1e-7 + 1e-7*abs(x) |
|
dp = (special.pbdv(eta, x + eps)[0] - special.pbdv(eta, x - eps)[0]) / eps / 2. |
|
assert_allclose(p[1], dp, rtol=1e-6, atol=1e-6) |
|
|
|
def test_pbvv_gradient(self): |
|
x = np.linspace(-4, 4, 8)[:,None] |
|
eta = np.linspace(-10, 10, 5)[None,:] |
|
|
|
p = special.pbvv(eta, x) |
|
eps = 1e-7 + 1e-7*abs(x) |
|
dp = (special.pbvv(eta, x + eps)[0] - special.pbvv(eta, x - eps)[0]) / eps / 2. |
|
assert_allclose(p[1], dp, rtol=1e-6, atol=1e-6) |
|
|
|
def test_pbvv_seq(self): |
|
res1, res2 = special.pbvv_seq(2, 3) |
|
assert_allclose(res1, np.array([2.976319645712036, |
|
1.358840996329579, |
|
0.5501016716383508])) |
|
assert_allclose(res2, np.array([3.105638472238475, |
|
0.9380581512176672, |
|
0.533688488872053])) |
|
|
|
|
|
class TestPolygamma: |
|
|
|
def test_polygamma(self): |
|
poly2 = special.polygamma(2,1) |
|
poly3 = special.polygamma(3,1) |
|
assert_almost_equal(poly2,-2.4041138063,10) |
|
assert_almost_equal(poly3,6.4939394023,10) |
|
|
|
|
|
x = [2, 3, 1.1e14] |
|
assert_almost_equal(special.polygamma(0, x), special.psi(x)) |
|
|
|
|
|
n = [0, 1, 2] |
|
x = [0.5, 1.5, 2.5] |
|
expected = [-1.9635100260214238, 0.93480220054467933, |
|
-0.23620405164172739] |
|
assert_almost_equal(special.polygamma(n, x), expected) |
|
expected = np.vstack([expected]*2) |
|
assert_almost_equal(special.polygamma(n, np.vstack([x]*2)), |
|
expected) |
|
assert_almost_equal(special.polygamma(np.vstack([n]*2), x), |
|
expected) |
|
|
|
|
|
class TestProCvSeq: |
|
def test_pro_cv_seq(self): |
|
prol = special.pro_cv_seq(0,3,1) |
|
assert_array_almost_equal(prol,array([0.319000, |
|
2.593084, |
|
6.533471, |
|
12.514462]),5) |
|
|
|
|
|
class TestPsi: |
|
def test_psi(self): |
|
ps = special.psi(1) |
|
assert_almost_equal(ps,-0.57721566490153287,8) |
|
|
|
|
|
class TestRadian: |
|
def test_radian(self): |
|
rad = special.radian(90,0,0) |
|
assert_almost_equal(rad,pi/2.0,5) |
|
|
|
def test_radianmore(self): |
|
rad1 = special.radian(90,1,60) |
|
assert_almost_equal(rad1,pi/2+0.0005816135199345904,5) |
|
|
|
|
|
class TestRiccati: |
|
def test_riccati_jn(self): |
|
N, x = 2, 0.2 |
|
S = np.empty((N, N)) |
|
for n in range(N): |
|
j = special.spherical_jn(n, x) |
|
jp = special.spherical_jn(n, x, derivative=True) |
|
S[0,n] = x*j |
|
S[1,n] = x*jp + j |
|
assert_array_almost_equal(S, special.riccati_jn(n, x), 8) |
|
|
|
def test_riccati_yn(self): |
|
N, x = 2, 0.2 |
|
C = np.empty((N, N)) |
|
for n in range(N): |
|
y = special.spherical_yn(n, x) |
|
yp = special.spherical_yn(n, x, derivative=True) |
|
C[0,n] = x*y |
|
C[1,n] = x*yp + y |
|
assert_array_almost_equal(C, special.riccati_yn(n, x), 8) |
|
|
|
|
|
class TestSoftplus: |
|
def test_softplus(self): |
|
|
|
|
|
|
|
|
|
|
|
import numpy as np |
|
rng = np.random.default_rng(3298432985245) |
|
n = 3 |
|
a1 = rng.uniform(-100, -37, size=n) |
|
a2 = rng.uniform(-37, 18, size=n) |
|
a3 = rng.uniform(18, 33.3, size=n) |
|
a4 = rng.uniform(33.33, 100, size=n) |
|
a = np.stack([a1, a2, a3, a4]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ref = [[1.692721323272333e-42, 7.42673911145206e-41, 8.504608846033205e-35], |
|
[1.8425343736349797, 9.488245799395577e-15, 7.225195764021444e-08], |
|
[31.253760266045106, 27.758244090327832, 29.995959179643634], |
|
[73.26040086468937, 76.24944728617226, 37.83955519155184]] |
|
|
|
res = softplus(a) |
|
assert_allclose(res, ref, rtol=2e-15) |
|
|
|
def test_softplus_with_kwargs(self): |
|
x = np.arange(5) - 2 |
|
out = np.ones(5) |
|
ref = out.copy() |
|
where = x > 0 |
|
|
|
softplus(x, out=out, where=where) |
|
ref[where] = softplus(x[where]) |
|
assert_allclose(out, ref) |
|
|
|
|
|
class TestRound: |
|
def test_round(self): |
|
rnd = list(map(int, (special.round(10.1), |
|
special.round(10.4), |
|
special.round(10.5), |
|
special.round(10.6)))) |
|
|
|
|
|
|
|
|
|
|
|
|
|
rndrl = (10,10,10,11) |
|
assert_array_equal(rnd,rndrl) |
|
|
|
|
|
|
|
|
|
def test_sph_harm(): |
|
|
|
|
|
sh = special.sph_harm |
|
pi = np.pi |
|
exp = np.exp |
|
sqrt = np.sqrt |
|
sin = np.sin |
|
cos = np.cos |
|
with suppress_warnings() as sup: |
|
sup.filter(category=DeprecationWarning) |
|
assert_array_almost_equal(sh(0,0,0,0), |
|
0.5/sqrt(pi)) |
|
assert_array_almost_equal(sh(-2,2,0.,pi/4), |
|
0.25*sqrt(15./(2.*pi)) * |
|
(sin(pi/4))**2.) |
|
assert_array_almost_equal(sh(-2,2,0.,pi/2), |
|
0.25*sqrt(15./(2.*pi))) |
|
assert_array_almost_equal(sh(2,2,pi,pi/2), |
|
0.25*sqrt(15/(2.*pi)) * |
|
exp(0+2.*pi*1j)*sin(pi/2.)**2.) |
|
assert_array_almost_equal(sh(2,4,pi/4.,pi/3.), |
|
(3./8.)*sqrt(5./(2.*pi)) * |
|
exp(0+2.*pi/4.*1j) * |
|
sin(pi/3.)**2. * |
|
(7.*cos(pi/3.)**2.-1)) |
|
assert_array_almost_equal(sh(4,4,pi/8.,pi/6.), |
|
(3./16.)*sqrt(35./(2.*pi)) * |
|
exp(0+4.*pi/8.*1j)*sin(pi/6.)**4.) |
|
|
|
|
|
def test_sph_harm_ufunc_loop_selection(): |
|
|
|
dt = np.dtype(np.complex128) |
|
with suppress_warnings() as sup: |
|
sup.filter(category=DeprecationWarning) |
|
assert_equal(special.sph_harm(0, 0, 0, 0).dtype, dt) |
|
assert_equal(special.sph_harm([0], 0, 0, 0).dtype, dt) |
|
assert_equal(special.sph_harm(0, [0], 0, 0).dtype, dt) |
|
assert_equal(special.sph_harm(0, 0, [0], 0).dtype, dt) |
|
assert_equal(special.sph_harm(0, 0, 0, [0]).dtype, dt) |
|
assert_equal(special.sph_harm([0], [0], [0], [0]).dtype, dt) |
|
|
|
|
|
class TestStruve: |
|
def _series(self, v, z, n=100): |
|
"""Compute Struve function & error estimate from its power series.""" |
|
k = arange(0, n) |
|
r = (-1)**k * (.5*z)**(2*k+v+1)/special.gamma(k+1.5)/special.gamma(k+v+1.5) |
|
err = abs(r).max() * finfo(double).eps * n |
|
return r.sum(), err |
|
|
|
def test_vs_series(self): |
|
"""Check Struve function versus its power series""" |
|
for v in [-20, -10, -7.99, -3.4, -1, 0, 1, 3.4, 12.49, 16]: |
|
for z in [1, 10, 19, 21, 30]: |
|
value, err = self._series(v, z) |
|
assert_allclose(special.struve(v, z), value, rtol=0, atol=err), (v, z) |
|
|
|
def test_some_values(self): |
|
assert_allclose(special.struve(-7.99, 21), 0.0467547614113, rtol=1e-7) |
|
assert_allclose(special.struve(-8.01, 21), 0.0398716951023, rtol=1e-8) |
|
assert_allclose(special.struve(-3.0, 200), 0.0142134427432, rtol=1e-12) |
|
assert_allclose(special.struve(-8.0, -41), 0.0192469727846, rtol=1e-11) |
|
assert_equal(special.struve(-12, -41), -special.struve(-12, 41)) |
|
assert_equal(special.struve(+12, -41), -special.struve(+12, 41)) |
|
assert_equal(special.struve(-11, -41), +special.struve(-11, 41)) |
|
assert_equal(special.struve(+11, -41), +special.struve(+11, 41)) |
|
|
|
assert_(isnan(special.struve(-7.1, -1))) |
|
assert_(isnan(special.struve(-10.1, -1))) |
|
|
|
def test_regression_679(self): |
|
"""Regression test for #679""" |
|
assert_allclose(special.struve(-1.0, 20 - 1e-8), |
|
special.struve(-1.0, 20 + 1e-8)) |
|
assert_allclose(special.struve(-2.0, 20 - 1e-8), |
|
special.struve(-2.0, 20 + 1e-8)) |
|
assert_allclose(special.struve(-4.3, 20 - 1e-8), |
|
special.struve(-4.3, 20 + 1e-8)) |
|
|
|
|
|
def test_chi2_smalldf(): |
|
assert_almost_equal(special.chdtr(0.6,3), 0.957890536704110) |
|
|
|
|
|
def test_ch2_inf(): |
|
assert_equal(special.chdtr(0.7,np.inf), 1.0) |
|
|
|
|
|
def test_chi2c_smalldf(): |
|
assert_almost_equal(special.chdtrc(0.6,3), 1-0.957890536704110) |
|
|
|
|
|
def test_chi2_inv_smalldf(): |
|
assert_almost_equal(special.chdtri(0.6,1-0.957890536704110), 3) |
|
|
|
|
|
def test_agm_simple(): |
|
rtol = 1e-13 |
|
|
|
|
|
assert_allclose(1/special.agm(1, np.sqrt(2)), 0.834626841674073186, |
|
rtol=rtol) |
|
|
|
|
|
|
|
agm13 = 1.863616783244897 |
|
agm15 = 2.604008190530940 |
|
agm35 = 3.936235503649555 |
|
assert_allclose(special.agm([[1], [3]], [1, 3, 5]), |
|
[[1, agm13, agm15], |
|
[agm13, 3, agm35]], rtol=rtol) |
|
|
|
|
|
|
|
agm12 = 1.4567910310469068 |
|
assert_allclose(special.agm(1, 2), agm12, rtol=rtol) |
|
assert_allclose(special.agm(2, 1), agm12, rtol=rtol) |
|
assert_allclose(special.agm(-1, -2), -agm12, rtol=rtol) |
|
assert_allclose(special.agm(24, 6), 13.458171481725614, rtol=rtol) |
|
assert_allclose(special.agm(13, 123456789.5), 11111458.498599306, |
|
rtol=rtol) |
|
assert_allclose(special.agm(1e30, 1), 2.229223055945383e+28, rtol=rtol) |
|
assert_allclose(special.agm(1e-22, 1), 0.030182566420169886, rtol=rtol) |
|
assert_allclose(special.agm(1e150, 1e180), 2.229223055945383e+178, |
|
rtol=rtol) |
|
assert_allclose(special.agm(1e180, 1e-150), 2.0634722510162677e+177, |
|
rtol=rtol) |
|
assert_allclose(special.agm(1e-150, 1e-170), 3.3112619670463756e-152, |
|
rtol=rtol) |
|
fi = np.finfo(1.0) |
|
assert_allclose(special.agm(fi.tiny, fi.max), 1.9892072050015473e+305, |
|
rtol=rtol) |
|
assert_allclose(special.agm(0.75*fi.max, fi.max), 1.564904312298045e+308, |
|
rtol=rtol) |
|
assert_allclose(special.agm(fi.tiny, 3*fi.tiny), 4.1466849866735005e-308, |
|
rtol=rtol) |
|
|
|
|
|
assert_equal(special.agm(0, 0), 0) |
|
assert_equal(special.agm(99, 0), 0) |
|
|
|
assert_equal(special.agm(-1, 10), np.nan) |
|
assert_equal(special.agm(0, np.inf), np.nan) |
|
assert_equal(special.agm(np.inf, 0), np.nan) |
|
assert_equal(special.agm(0, -np.inf), np.nan) |
|
assert_equal(special.agm(-np.inf, 0), np.nan) |
|
assert_equal(special.agm(np.inf, -np.inf), np.nan) |
|
assert_equal(special.agm(-np.inf, np.inf), np.nan) |
|
assert_equal(special.agm(1, np.nan), np.nan) |
|
assert_equal(special.agm(np.nan, -1), np.nan) |
|
|
|
assert_equal(special.agm(1, np.inf), np.inf) |
|
assert_equal(special.agm(np.inf, 1), np.inf) |
|
assert_equal(special.agm(-1, -np.inf), -np.inf) |
|
assert_equal(special.agm(-np.inf, -1), -np.inf) |
|
|
|
|
|
def test_legacy(): |
|
|
|
with suppress_warnings() as sup: |
|
sup.filter(RuntimeWarning, "floating point number truncated to an integer") |
|
assert_equal(special.expn(1, 0.3), special.expn(1.8, 0.3)) |
|
assert_equal(special.nbdtrc(1, 2, 0.3), special.nbdtrc(1.8, 2.8, 0.3)) |
|
assert_equal(special.nbdtr(1, 2, 0.3), special.nbdtr(1.8, 2.8, 0.3)) |
|
assert_equal(special.nbdtri(1, 2, 0.3), special.nbdtri(1.8, 2.8, 0.3)) |
|
assert_equal(special.pdtri(1, 0.3), special.pdtri(1.8, 0.3)) |
|
assert_equal(special.kn(1, 0.3), special.kn(1.8, 0.3)) |
|
assert_equal(special.yn(1, 0.3), special.yn(1.8, 0.3)) |
|
assert_equal(special.smirnov(1, 0.3), special.smirnov(1.8, 0.3)) |
|
assert_equal(special.smirnovi(1, 0.3), special.smirnovi(1.8, 0.3)) |
|
|
|
|
|
|
|
@pytest.fixture |
|
def errstate_lock(): |
|
import threading |
|
return threading.Lock() |
|
|
|
|
|
@with_special_errors |
|
def test_error_raising(errstate_lock): |
|
with errstate_lock: |
|
with special.errstate(all='raise'): |
|
assert_raises(special.SpecialFunctionError, special.iv, 1, 1e99j) |
|
|
|
|
|
def test_xlogy(): |
|
def xfunc(x, y): |
|
with np.errstate(invalid='ignore'): |
|
if x == 0 and not np.isnan(y): |
|
return x |
|
else: |
|
return x*np.log(y) |
|
|
|
z1 = np.asarray([(0,0), (0, np.nan), (0, np.inf), (1.0, 2.0)], dtype=float) |
|
z2 = np.r_[z1, [(0, 1j), (1, 1j)]] |
|
|
|
w1 = np.vectorize(xfunc)(z1[:,0], z1[:,1]) |
|
assert_func_equal(special.xlogy, w1, z1, rtol=1e-13, atol=1e-13) |
|
w2 = np.vectorize(xfunc)(z2[:,0], z2[:,1]) |
|
assert_func_equal(special.xlogy, w2, z2, rtol=1e-13, atol=1e-13) |
|
|
|
|
|
def test_xlog1py(): |
|
def xfunc(x, y): |
|
with np.errstate(invalid='ignore'): |
|
if x == 0 and not np.isnan(y): |
|
return x |
|
else: |
|
return x * np.log1p(y) |
|
|
|
z1 = np.asarray([(0,0), (0, np.nan), (0, np.inf), (1.0, 2.0), |
|
(1, 1e-30)], dtype=float) |
|
w1 = np.vectorize(xfunc)(z1[:,0], z1[:,1]) |
|
assert_func_equal(special.xlog1py, w1, z1, rtol=1e-13, atol=1e-13) |
|
|
|
|
|
def test_entr(): |
|
def xfunc(x): |
|
if x < 0: |
|
return -np.inf |
|
else: |
|
return -special.xlogy(x, x) |
|
values = (0, 0.5, 1.0, np.inf) |
|
signs = [-1, 1] |
|
arr = [] |
|
for sgn, v in itertools.product(signs, values): |
|
arr.append(sgn * v) |
|
z = np.array(arr, dtype=float) |
|
w = np.vectorize(xfunc, otypes=[np.float64])(z) |
|
assert_func_equal(special.entr, w, z, rtol=1e-13, atol=1e-13) |
|
|
|
|
|
def test_kl_div(): |
|
def xfunc(x, y): |
|
if x < 0 or y < 0 or (y == 0 and x != 0): |
|
|
|
return np.inf |
|
elif np.isposinf(x) or np.isposinf(y): |
|
|
|
return np.inf |
|
elif x == 0: |
|
return y |
|
else: |
|
return special.xlogy(x, x/y) - x + y |
|
values = (0, 0.5, 1.0) |
|
signs = [-1, 1] |
|
arr = [] |
|
for sgna, va, sgnb, vb in itertools.product(signs, values, signs, values): |
|
arr.append((sgna*va, sgnb*vb)) |
|
z = np.array(arr, dtype=float) |
|
w = np.vectorize(xfunc, otypes=[np.float64])(z[:,0], z[:,1]) |
|
assert_func_equal(special.kl_div, w, z, rtol=1e-13, atol=1e-13) |
|
|
|
|
|
def test_rel_entr(): |
|
def xfunc(x, y): |
|
if x > 0 and y > 0: |
|
return special.xlogy(x, x/y) |
|
elif x == 0 and y >= 0: |
|
return 0 |
|
else: |
|
return np.inf |
|
values = (0, 0.5, 1.0) |
|
signs = [-1, 1] |
|
arr = [] |
|
for sgna, va, sgnb, vb in itertools.product(signs, values, signs, values): |
|
arr.append((sgna*va, sgnb*vb)) |
|
z = np.array(arr, dtype=float) |
|
w = np.vectorize(xfunc, otypes=[np.float64])(z[:,0], z[:,1]) |
|
assert_func_equal(special.rel_entr, w, z, rtol=1e-13, atol=1e-13) |
|
|
|
|
|
def test_rel_entr_gh_20710_near_zero(): |
|
|
|
inputs = np.array([ |
|
|
|
(0.9456657713430001, 0.9456657713430094), |
|
(0.48066098564791515, 0.48066098564794774), |
|
(0.786048657854401, 0.7860486578542367), |
|
]) |
|
|
|
expected = [ |
|
-9.325873406851269e-15, |
|
-3.258504577274724e-14, |
|
1.6431300764454033e-13, |
|
] |
|
x = inputs[:, 0] |
|
y = inputs[:, 1] |
|
assert_allclose(special.rel_entr(x, y), expected, rtol=1e-13, atol=0) |
|
|
|
|
|
def test_rel_entr_gh_20710_overflow(): |
|
special.seterr(all='ignore') |
|
inputs = np.array([ |
|
|
|
|
|
(4, 2.22e-308), |
|
|
|
(1e-200, 1e+200), |
|
|
|
(2.22e-308, 1e15), |
|
]) |
|
|
|
expected = [ |
|
2839.139983229607, |
|
-9.210340371976183e-198, |
|
-1.6493212008074475e-305, |
|
] |
|
x = inputs[:, 0] |
|
y = inputs[:, 1] |
|
assert_allclose(special.rel_entr(x, y), expected, rtol=1e-13, atol=0) |
|
|
|
|
|
def test_huber(): |
|
assert_equal(special.huber(-1, 1.5), np.inf) |
|
assert_allclose(special.huber(2, 1.5), 0.5 * np.square(1.5)) |
|
assert_allclose(special.huber(2, 2.5), 2 * (2.5 - 0.5 * 2)) |
|
|
|
def xfunc(delta, r): |
|
if delta < 0: |
|
return np.inf |
|
elif np.abs(r) < delta: |
|
return 0.5 * np.square(r) |
|
else: |
|
return delta * (np.abs(r) - 0.5 * delta) |
|
|
|
z = np.random.randn(10, 2) |
|
w = np.vectorize(xfunc, otypes=[np.float64])(z[:,0], z[:,1]) |
|
assert_func_equal(special.huber, w, z, rtol=1e-13, atol=1e-13) |
|
|
|
|
|
def test_pseudo_huber(): |
|
def xfunc(delta, r): |
|
if delta < 0: |
|
return np.inf |
|
elif (not delta) or (not r): |
|
return 0 |
|
else: |
|
return delta**2 * (np.sqrt(1 + (r/delta)**2) - 1) |
|
|
|
z = np.array(np.random.randn(10, 2).tolist() + [[0, 0.5], [0.5, 0]]) |
|
w = np.vectorize(xfunc, otypes=[np.float64])(z[:,0], z[:,1]) |
|
assert_func_equal(special.pseudo_huber, w, z, rtol=1e-13, atol=1e-13) |
|
|
|
|
|
def test_pseudo_huber_small_r(): |
|
delta = 1.0 |
|
r = 1e-18 |
|
y = special.pseudo_huber(delta, r) |
|
|
|
|
|
|
|
|
|
|
|
expected = 5.0000000000000005e-37 |
|
assert_allclose(y, expected, rtol=1e-13) |
|
|
|
|
|
@pytest.mark.thread_unsafe |
|
def test_runtime_warning(): |
|
with pytest.warns(RuntimeWarning, |
|
match=r'Too many predicted coefficients'): |
|
mathieu_odd_coef(1000, 1000) |
|
with pytest.warns(RuntimeWarning, |
|
match=r'Too many predicted coefficients'): |
|
mathieu_even_coef(1000, 1000) |
|
|
|
|
|
class TestStirling2: |
|
table = [ |
|
[1], |
|
[0, 1], |
|
[0, 1, 1], |
|
[0, 1, 3, 1], |
|
[0, 1, 7, 6, 1], |
|
[0, 1, 15, 25, 10, 1], |
|
[0, 1, 31, 90, 65, 15, 1], |
|
[0, 1, 63, 301, 350, 140, 21, 1], |
|
[0, 1, 127, 966, 1701, 1050, 266, 28, 1], |
|
[0, 1, 255, 3025, 7770, 6951, 2646, 462, 36, 1], |
|
[0, 1, 511, 9330, 34105, 42525, 22827, 5880, 750, 45, 1], |
|
] |
|
|
|
@pytest.mark.parametrize("is_exact, comp, kwargs", [ |
|
(True, assert_equal, {}), |
|
(False, assert_allclose, {'rtol': 1e-12}) |
|
]) |
|
def test_table_cases(self, is_exact, comp, kwargs): |
|
for n in range(1, len(self.table)): |
|
k_values = list(range(n+1)) |
|
row = self.table[n] |
|
comp(row, stirling2([n], k_values, exact=is_exact), **kwargs) |
|
|
|
@pytest.mark.parametrize("is_exact, comp, kwargs", [ |
|
(True, assert_equal, {}), |
|
(False, assert_allclose, {'rtol': 1e-12}) |
|
]) |
|
def test_valid_single_integer(self, is_exact, comp, kwargs): |
|
comp(stirling2(0, 0, exact=is_exact), self.table[0][0], **kwargs) |
|
comp(stirling2(4, 2, exact=is_exact), self.table[4][2], **kwargs) |
|
|
|
|
|
comp(stirling2(5, 3, exact=is_exact), 25, **kwargs) |
|
comp(stirling2([5], [3], exact=is_exact), [25], **kwargs) |
|
|
|
@pytest.mark.parametrize("is_exact, comp, kwargs", [ |
|
(True, assert_equal, {}), |
|
(False, assert_allclose, {'rtol': 1e-12}) |
|
]) |
|
def test_negative_integer(self, is_exact, comp, kwargs): |
|
|
|
comp(stirling2(-1, -1, exact=is_exact), 0, **kwargs) |
|
comp(stirling2(-1, 2, exact=is_exact), 0, **kwargs) |
|
comp(stirling2(2, -1, exact=is_exact), 0, **kwargs) |
|
|
|
@pytest.mark.parametrize("is_exact, comp, kwargs", [ |
|
(True, assert_equal, {}), |
|
(False, assert_allclose, {'rtol': 1e-12}) |
|
]) |
|
def test_array_inputs(self, is_exact, comp, kwargs): |
|
ans = [self.table[10][3], self.table[10][4]] |
|
comp(stirling2(asarray([10, 10]), |
|
asarray([3, 4]), |
|
exact=is_exact), |
|
ans) |
|
comp(stirling2([10, 10], |
|
asarray([3, 4]), |
|
exact=is_exact), |
|
ans) |
|
comp(stirling2(asarray([10, 10]), |
|
[3, 4], |
|
exact=is_exact), |
|
ans) |
|
|
|
@pytest.mark.parametrize("is_exact, comp, kwargs", [ |
|
(True, assert_equal, {}), |
|
(False, assert_allclose, {'rtol': 1e-13}) |
|
]) |
|
def test_mixed_values(self, is_exact, comp, kwargs): |
|
|
|
ans = [0, 1, 3, 25, 1050, 5880, 9330] |
|
n = [-1, 0, 3, 5, 8, 10, 10] |
|
k = [-2, 0, 2, 3, 5, 7, 3] |
|
comp(stirling2(n, k, exact=is_exact), ans, **kwargs) |
|
|
|
def test_correct_parity(self): |
|
"""Test parity follows well known identity. |
|
|
|
en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind#Parity |
|
""" |
|
n, K = 100, np.arange(101) |
|
assert_equal( |
|
stirling2(n, K, exact=True) % 2, |
|
[math.comb(n - (k // 2) - 1, n - k) % 2 for k in K], |
|
) |
|
|
|
def test_big_numbers(self): |
|
|
|
ans = asarray([48063331393110, 48004081105038305]) |
|
n = [25, 30] |
|
k = [17, 4] |
|
assert array_equal(stirling2(n, k, exact=True), ans) |
|
|
|
ans = asarray([2801934359500572414253157841233849412, |
|
14245032222277144547280648984426251]) |
|
n = [42, 43] |
|
k = [17, 23] |
|
assert array_equal(stirling2(n, k, exact=True), ans) |
|
|
|
@pytest.mark.parametrize("N", [4.5, 3., 4+1j, "12", np.nan]) |
|
@pytest.mark.parametrize("K", [3.5, 3, "2", None]) |
|
@pytest.mark.parametrize("is_exact", [True, False]) |
|
def test_unsupported_input_types(self, N, K, is_exact): |
|
|
|
with pytest.raises(TypeError): |
|
stirling2(N, K, exact=is_exact) |
|
|
|
@pytest.mark.parametrize("is_exact", [True, False]) |
|
def test_numpy_array_int_object_dtype(self, is_exact): |
|
|
|
|
|
ans = asarray(self.table[4][1:]) |
|
n = asarray([4, 4, 4, 4], dtype=object) |
|
k = asarray([1, 2, 3, 4], dtype=object) |
|
with pytest.raises(TypeError): |
|
array_equal(stirling2(n, k, exact=is_exact), ans) |
|
|
|
@pytest.mark.parametrize("is_exact, comp, kwargs", [ |
|
(True, assert_equal, {}), |
|
(False, assert_allclose, {'rtol': 1e-13}) |
|
]) |
|
def test_numpy_array_unsigned_int_dtype(self, is_exact, comp, kwargs): |
|
|
|
ans = asarray(self.table[4][1:]) |
|
n = asarray([4, 4, 4, 4], dtype=np_ulong) |
|
k = asarray([1, 2, 3, 4], dtype=np_ulong) |
|
comp(stirling2(n, k, exact=False), ans, **kwargs) |
|
|
|
@pytest.mark.parametrize("is_exact, comp, kwargs", [ |
|
(True, assert_equal, {}), |
|
(False, assert_allclose, {'rtol': 1e-13}) |
|
]) |
|
def test_broadcasting_arrays_correctly(self, is_exact, comp, kwargs): |
|
|
|
|
|
ans = asarray([[1, 15, 25, 10], [1, 7, 6, 1]]) |
|
n = asarray([[5, 5, 5, 5], [4, 4, 4, 4]]) |
|
k = asarray([1, 2, 3, 4]) |
|
comp(stirling2(n, k, exact=is_exact), ans, **kwargs) |
|
|
|
n = asarray([[4], [4], [4], [4], [4]]) |
|
k = asarray([0, 1, 2, 3, 4, 5]) |
|
ans = asarray([[0, 1, 7, 6, 1, 0] for _ in range(5)]) |
|
comp(stirling2(n, k, exact=False), ans, **kwargs) |
|
|
|
def test_temme_rel_max_error(self): |
|
|
|
|
|
x = list(range(51, 101, 5)) |
|
for n in x: |
|
k_entries = list(range(1, n+1)) |
|
denom = stirling2([n], k_entries, exact=True) |
|
num = denom - stirling2([n], k_entries, exact=False) |
|
assert np.max(np.abs(num / denom)) < 2e-5 |
|
|
|
|
|
class TestLegendreDeprecation: |
|
|
|
def test_warn_lpn(self): |
|
msg = "`scipy.special.lpn` is deprecated..." |
|
with pytest.deprecated_call(match=msg): |
|
_ = lpn(1, 0) |
|
|
|
@pytest.mark.parametrize("xlpmn", [lpmn, clpmn]) |
|
def test_warn_xlpmn(self, xlpmn): |
|
message = f"`scipy.special.{xlpmn.__name__}` is deprecated..." |
|
with pytest.deprecated_call(match=message): |
|
_ = xlpmn(1, 1, 0) |
|
|
|
def test_warn_sph_harm(self): |
|
msg = "`scipy.special.sph_harm` is deprecated..." |
|
with pytest.deprecated_call(match=msg): |
|
_ = special.sph_harm(1, 1, 0, 0) |
|
|