|
import numpy as np |
|
from scipy._lib._array_api import ( |
|
assert_array_almost_equal, assert_almost_equal, xp_assert_close |
|
) |
|
|
|
import pytest |
|
from scipy.signal import cont2discrete as c2d |
|
from scipy.signal import dlsim, ss2tf, ss2zpk, lsim, lti |
|
from scipy.signal import tf2ss, impulse, dimpulse, step, dstep |
|
|
|
|
|
|
|
|
|
|
|
class TestC2D: |
|
@pytest.mark.thread_unsafe |
|
def test_zoh(self): |
|
ac = np.eye(2, dtype=np.float64) |
|
bc = np.full((2, 1), 0.5, dtype=np.float64) |
|
cc = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]]) |
|
dc = np.array([[0.0], [0.0], [-0.33]]) |
|
|
|
ad_truth = 1.648721270700128 * np.eye(2) |
|
bd_truth = np.full((2, 1), 0.324360635350064) |
|
|
|
dt_requested = 0.5 |
|
|
|
ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested, method='zoh') |
|
|
|
assert_array_almost_equal(ad_truth, ad) |
|
assert_array_almost_equal(bd_truth, bd) |
|
assert_array_almost_equal(cc, cd) |
|
assert_array_almost_equal(dc, dd) |
|
assert_almost_equal(dt_requested, dt) |
|
|
|
def test_foh(self): |
|
ac = np.eye(2) |
|
bc = np.full((2, 1), 0.5) |
|
cc = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]]) |
|
dc = np.array([[0.0], [0.0], [-0.33]]) |
|
|
|
|
|
ad_truth = 1.648721270700128 * np.eye(2) |
|
bd_truth = np.full((2, 1), 0.420839287058789) |
|
cd_truth = cc |
|
dd_truth = np.array([[0.260262223725224], |
|
[0.297442541400256], |
|
[-0.144098411624840]]) |
|
dt_requested = 0.5 |
|
|
|
ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested, method='foh') |
|
|
|
assert_array_almost_equal(ad_truth, ad) |
|
assert_array_almost_equal(bd_truth, bd) |
|
assert_array_almost_equal(cd_truth, cd) |
|
assert_array_almost_equal(dd_truth, dd) |
|
assert_almost_equal(dt_requested, dt) |
|
|
|
def test_impulse(self): |
|
ac = np.eye(2) |
|
bc = np.full((2, 1), 0.5) |
|
cc = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]]) |
|
dc = np.array([[0.0], [0.0], [0.0]]) |
|
|
|
|
|
ad_truth = 1.648721270700128 * np.eye(2) |
|
bd_truth = np.full((2, 1), 0.412180317675032) |
|
cd_truth = cc |
|
dd_truth = np.array([[0.4375], [0.5], [0.3125]]) |
|
dt_requested = 0.5 |
|
|
|
ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested, |
|
method='impulse') |
|
|
|
assert_array_almost_equal(ad_truth, ad) |
|
assert_array_almost_equal(bd_truth, bd) |
|
assert_array_almost_equal(cd_truth, cd) |
|
assert_array_almost_equal(dd_truth, dd) |
|
assert_almost_equal(dt_requested, dt) |
|
|
|
def test_gbt(self): |
|
ac = np.eye(2) |
|
bc = np.full((2, 1), 0.5) |
|
cc = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]]) |
|
dc = np.array([[0.0], [0.0], [-0.33]]) |
|
|
|
dt_requested = 0.5 |
|
alpha = 1.0 / 3.0 |
|
|
|
ad_truth = 1.6 * np.eye(2) |
|
bd_truth = np.full((2, 1), 0.3) |
|
cd_truth = np.array([[0.9, 1.2], |
|
[1.2, 1.2], |
|
[1.2, 0.3]]) |
|
dd_truth = np.array([[0.175], |
|
[0.2], |
|
[-0.205]]) |
|
|
|
ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested, |
|
method='gbt', alpha=alpha) |
|
|
|
assert_array_almost_equal(ad_truth, ad) |
|
assert_array_almost_equal(bd_truth, bd) |
|
assert_array_almost_equal(cd_truth, cd) |
|
assert_array_almost_equal(dd_truth, dd) |
|
|
|
def test_euler(self): |
|
ac = np.eye(2) |
|
bc = np.full((2, 1), 0.5) |
|
cc = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]]) |
|
dc = np.array([[0.0], [0.0], [-0.33]]) |
|
|
|
dt_requested = 0.5 |
|
|
|
ad_truth = 1.5 * np.eye(2) |
|
bd_truth = np.full((2, 1), 0.25) |
|
cd_truth = np.array([[0.75, 1.0], |
|
[1.0, 1.0], |
|
[1.0, 0.25]]) |
|
dd_truth = dc |
|
|
|
ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested, |
|
method='euler') |
|
|
|
assert_array_almost_equal(ad_truth, ad) |
|
assert_array_almost_equal(bd_truth, bd) |
|
assert_array_almost_equal(cd_truth, cd) |
|
assert_array_almost_equal(dd_truth, dd) |
|
assert_almost_equal(dt_requested, dt) |
|
|
|
def test_backward_diff(self): |
|
ac = np.eye(2) |
|
bc = np.full((2, 1), 0.5) |
|
cc = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]]) |
|
dc = np.array([[0.0], [0.0], [-0.33]]) |
|
|
|
dt_requested = 0.5 |
|
|
|
ad_truth = 2.0 * np.eye(2) |
|
bd_truth = np.full((2, 1), 0.5) |
|
cd_truth = np.array([[1.5, 2.0], |
|
[2.0, 2.0], |
|
[2.0, 0.5]]) |
|
dd_truth = np.array([[0.875], |
|
[1.0], |
|
[0.295]]) |
|
|
|
ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested, |
|
method='backward_diff') |
|
|
|
assert_array_almost_equal(ad_truth, ad) |
|
assert_array_almost_equal(bd_truth, bd) |
|
assert_array_almost_equal(cd_truth, cd) |
|
assert_array_almost_equal(dd_truth, dd) |
|
|
|
def test_bilinear(self): |
|
ac = np.eye(2) |
|
bc = np.full((2, 1), 0.5) |
|
cc = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]]) |
|
dc = np.array([[0.0], [0.0], [-0.33]]) |
|
|
|
dt_requested = 0.5 |
|
|
|
ad_truth = (5.0 / 3.0) * np.eye(2) |
|
bd_truth = np.full((2, 1), 1.0 / 3.0) |
|
cd_truth = np.array([[1.0, 4.0 / 3.0], |
|
[4.0 / 3.0, 4.0 / 3.0], |
|
[4.0 / 3.0, 1.0 / 3.0]]) |
|
dd_truth = np.array([[0.291666666666667], |
|
[1.0 / 3.0], |
|
[-0.121666666666667]]) |
|
|
|
ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested, |
|
method='bilinear') |
|
|
|
assert_array_almost_equal(ad_truth, ad) |
|
assert_array_almost_equal(bd_truth, bd) |
|
assert_array_almost_equal(cd_truth, cd) |
|
assert_array_almost_equal(dd_truth, dd) |
|
assert_almost_equal(dt_requested, dt) |
|
|
|
|
|
|
|
ad_truth = 1.4 * np.eye(2) |
|
bd_truth = np.full((2, 1), 0.2) |
|
cd_truth = np.array([[0.9, 1.2], [1.2, 1.2], [1.2, 0.3]]) |
|
dd_truth = np.array([[0.175], [0.2], [-0.205]]) |
|
|
|
dt_requested = 1.0 / 3.0 |
|
|
|
ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested, |
|
method='bilinear') |
|
|
|
assert_array_almost_equal(ad_truth, ad) |
|
assert_array_almost_equal(bd_truth, bd) |
|
assert_array_almost_equal(cd_truth, cd) |
|
assert_array_almost_equal(dd_truth, dd) |
|
assert_almost_equal(dt_requested, dt) |
|
|
|
def test_transferfunction(self): |
|
numc = np.array([0.25, 0.25, 0.5]) |
|
denc = np.array([0.75, 0.75, 1.0]) |
|
|
|
numd = np.array([[1.0 / 3.0, -0.427419169438754, 0.221654141101125]]) |
|
dend = np.array([1.0, -1.351394049721225, 0.606530659712634]) |
|
|
|
dt_requested = 0.5 |
|
|
|
num, den, dt = c2d((numc, denc), dt_requested, method='zoh') |
|
|
|
assert_array_almost_equal(numd, num) |
|
assert_array_almost_equal(dend, den) |
|
assert_almost_equal(dt_requested, dt) |
|
|
|
def test_zerospolesgain(self): |
|
zeros_c = np.array([0.5, -0.5]) |
|
poles_c = np.array([1.j / np.sqrt(2), -1.j / np.sqrt(2)]) |
|
k_c = 1.0 |
|
|
|
zeros_d = [1.23371727305860, 0.735356894461267] |
|
polls_d = [0.938148335039729 + 0.346233593780536j, |
|
0.938148335039729 - 0.346233593780536j] |
|
k_d = 1.0 |
|
|
|
dt_requested = 0.5 |
|
|
|
zeros, poles, k, dt = c2d((zeros_c, poles_c, k_c), dt_requested, |
|
method='zoh') |
|
|
|
assert_array_almost_equal(zeros_d, zeros) |
|
assert_array_almost_equal(polls_d, poles) |
|
assert_almost_equal(k_d, k) |
|
assert_almost_equal(dt_requested, dt) |
|
|
|
def test_gbt_with_sio_tf_and_zpk(self): |
|
"""Test method='gbt' with alpha=0.25 for tf and zpk cases.""" |
|
|
|
A = -1.0 |
|
B = 1.0 |
|
C = 1.0 |
|
D = 0.5 |
|
|
|
|
|
cnum, cden = ss2tf(A, B, C, D) |
|
|
|
|
|
cz, cp, ck = ss2zpk(A, B, C, D) |
|
|
|
h = 1.0 |
|
alpha = 0.25 |
|
|
|
|
|
Ad = (1 + (1 - alpha) * h * A) / (1 - alpha * h * A) |
|
Bd = h * B / (1 - alpha * h * A) |
|
Cd = C / (1 - alpha * h * A) |
|
Dd = D + alpha * C * Bd |
|
|
|
|
|
dnum, dden = ss2tf(Ad, Bd, Cd, Dd) |
|
|
|
|
|
c2dnum, c2dden, dt = c2d((cnum, cden), h, method='gbt', alpha=alpha) |
|
|
|
xp_assert_close(dnum, c2dnum) |
|
xp_assert_close(dden, c2dden) |
|
|
|
|
|
dz, dp, dk = ss2zpk(Ad, Bd, Cd, Dd) |
|
|
|
|
|
c2dz, c2dp, c2dk, dt = c2d((cz, cp, ck), h, method='gbt', alpha=alpha) |
|
|
|
xp_assert_close(dz, c2dz) |
|
xp_assert_close(dp, c2dp) |
|
xp_assert_close(dk, c2dk) |
|
|
|
def test_discrete_approx(self): |
|
""" |
|
Test that the solution to the discrete approximation of a continuous |
|
system actually approximates the solution to the continuous system. |
|
This is an indirect test of the correctness of the implementation |
|
of cont2discrete. |
|
""" |
|
|
|
def u(t): |
|
return np.sin(2.5 * t) |
|
|
|
a = np.array([[-0.01]]) |
|
b = np.array([[1.0]]) |
|
c = np.array([[1.0]]) |
|
d = np.array([[0.2]]) |
|
x0 = 1.0 |
|
|
|
t = np.linspace(0, 10.0, 101) |
|
dt = t[1] - t[0] |
|
u1 = u(t) |
|
|
|
|
|
t, yout, xout = lsim((a, b, c, d), T=t, U=u1, X0=x0) |
|
|
|
|
|
dsys = c2d((a, b, c, d), dt, method='bilinear') |
|
|
|
|
|
|
|
u2 = 0.5 * (u1[:-1] + u1[1:]) |
|
t2 = t[:-1] |
|
td2, yd2, xd2 = dlsim(dsys, u=u2.reshape(-1, 1), t=t2, x0=x0) |
|
|
|
|
|
|
|
|
|
ymid = 0.5 * (yout[:-1] + yout[1:]) |
|
|
|
xp_assert_close(yd2.ravel(), ymid, rtol=1e-4) |
|
|
|
def test_simo_tf(self): |
|
|
|
tf = ([[1, 0], [1, 1]], [1, 1]) |
|
num, den, dt = c2d(tf, 0.01) |
|
|
|
assert dt == 0.01 |
|
xp_assert_close(den, [1, -0.990404983], rtol=1e-3) |
|
xp_assert_close(num, [[1, -1], [1, -0.99004983]], rtol=1e-3) |
|
|
|
def test_multioutput(self): |
|
ts = 0.01 |
|
|
|
tf = ([[1, -3], [1, 5]], [1, 1]) |
|
num, den, dt = c2d(tf, ts) |
|
|
|
tf1 = (tf[0][0], tf[1]) |
|
num1, den1, dt1 = c2d(tf1, ts) |
|
|
|
tf2 = (tf[0][1], tf[1]) |
|
num2, den2, dt2 = c2d(tf2, ts) |
|
|
|
|
|
assert dt == dt1 |
|
assert dt == dt2 |
|
|
|
|
|
xp_assert_close(num, np.vstack((num1, num2)), rtol=1e-13) |
|
|
|
|
|
|
|
xp_assert_close(den, den1, rtol=1e-13) |
|
xp_assert_close(den, den2, rtol=1e-13) |
|
|
|
class TestC2dLti: |
|
def test_c2d_ss(self): |
|
|
|
A = np.array([[-0.3, 0.1], [0.2, -0.7]]) |
|
B = np.array([[0], [1]]) |
|
C = np.array([[1, 0]]) |
|
D = 0 |
|
|
|
A_res = np.array([[0.985136404135682, 0.004876671474795], |
|
[0.009753342949590, 0.965629718236502]]) |
|
B_res = np.array([[0.000122937599964], [0.049135527547844]]) |
|
|
|
sys_ssc = lti(A, B, C, D) |
|
sys_ssd = sys_ssc.to_discrete(0.05) |
|
|
|
xp_assert_close(sys_ssd.A, A_res) |
|
xp_assert_close(sys_ssd.B, B_res) |
|
xp_assert_close(sys_ssd.C, C) |
|
xp_assert_close(sys_ssd.D, np.zeros_like(sys_ssd.D)) |
|
|
|
def test_c2d_tf(self): |
|
|
|
sys = lti([0.5, 0.3], [1.0, 0.4]) |
|
sys = sys.to_discrete(0.005) |
|
|
|
|
|
num_res = np.array([0.5, -0.485149004980066]) |
|
den_res = np.array([1.0, -0.980198673306755]) |
|
|
|
|
|
xp_assert_close(sys.den, den_res, atol=0.02) |
|
xp_assert_close(sys.num, num_res, atol=0.02) |
|
|
|
|
|
class TestC2dInvariants: |
|
|
|
|
|
cases = [ |
|
(tf2ss([1, 1], [1, 1.5, 1]), 0.25, 10), |
|
(tf2ss([1, 2], [1, 1.5, 3, 1]), 0.5, 10), |
|
(tf2ss(0.1, [1, 1, 2, 1]), 0.5, 10), |
|
] |
|
|
|
|
|
|
|
@pytest.mark.parametrize("sys,sample_time,samples_number", cases) |
|
def test_impulse_invariant(self, sys, sample_time, samples_number): |
|
time = np.arange(samples_number) * sample_time |
|
_, yout_cont = impulse(sys, T=time) |
|
_, yout_disc = dimpulse(c2d(sys, sample_time, method='impulse'), |
|
n=len(time)) |
|
xp_assert_close(sample_time * yout_cont.ravel(), yout_disc[0].ravel()) |
|
|
|
|
|
@pytest.mark.parametrize("sys,sample_time,samples_number", cases) |
|
def test_step_invariant(self, sys, sample_time, samples_number): |
|
time = np.arange(samples_number) * sample_time |
|
_, yout_cont = step(sys, T=time) |
|
_, yout_disc = dstep(c2d(sys, sample_time, method='zoh'), n=len(time)) |
|
xp_assert_close(yout_cont.ravel(), yout_disc[0].ravel()) |
|
|
|
|
|
@pytest.mark.parametrize("sys,sample_time,samples_number", cases) |
|
def test_linear_invariant(self, sys, sample_time, samples_number): |
|
time = np.arange(samples_number) * sample_time |
|
_, yout_cont, _ = lsim(sys, T=time, U=time) |
|
_, yout_disc, _ = dlsim(c2d(sys, sample_time, method='foh'), u=time) |
|
xp_assert_close(yout_cont.ravel(), yout_disc.ravel()) |
|
|