spam-classifier
/
venv
/lib
/python3.11
/site-packages
/scipy
/interpolate
/tests
/test_ndgriddata.py
import numpy as np | |
from scipy._lib._array_api import ( | |
xp_assert_equal, xp_assert_close | |
) | |
import pytest | |
from pytest import raises as assert_raises | |
from scipy.interpolate import (griddata, NearestNDInterpolator, | |
LinearNDInterpolator, | |
CloughTocher2DInterpolator) | |
from scipy._lib._testutils import _run_concurrent_barrier | |
parametrize_interpolators = pytest.mark.parametrize( | |
"interpolator", [NearestNDInterpolator, LinearNDInterpolator, | |
CloughTocher2DInterpolator] | |
) | |
parametrize_methods = pytest.mark.parametrize( | |
'method', | |
('nearest', 'linear', 'cubic'), | |
) | |
parametrize_rescale = pytest.mark.parametrize( | |
'rescale', | |
(True, False), | |
) | |
class TestGriddata: | |
def test_fill_value(self): | |
x = [(0,0), (0,1), (1,0)] | |
y = [1, 2, 3] | |
yi = griddata(x, y, [(1,1), (1,2), (0,0)], fill_value=-1) | |
xp_assert_equal(yi, [-1., -1, 1]) | |
yi = griddata(x, y, [(1,1), (1,2), (0,0)]) | |
xp_assert_equal(yi, [np.nan, np.nan, 1]) | |
def test_alternative_call(self, method, rescale): | |
x = np.array([(0,0), (-0.5,-0.5), (-0.5,0.5), (0.5, 0.5), (0.25, 0.3)], | |
dtype=np.float64) | |
y = (np.arange(x.shape[0], dtype=np.float64)[:,None] | |
+ np.array([0,1])[None,:]) | |
msg = repr((method, rescale)) | |
yi = griddata((x[:,0], x[:,1]), y, (x[:,0], x[:,1]), method=method, | |
rescale=rescale) | |
xp_assert_close(y, yi, atol=1e-14, err_msg=msg) | |
def test_multivalue_2d(self, method, rescale): | |
x = np.array([(0,0), (-0.5,-0.5), (-0.5,0.5), (0.5, 0.5), (0.25, 0.3)], | |
dtype=np.float64) | |
y = (np.arange(x.shape[0], dtype=np.float64)[:,None] | |
+ np.array([0,1])[None,:]) | |
msg = repr((method, rescale)) | |
yi = griddata(x, y, x, method=method, rescale=rescale) | |
xp_assert_close(y, yi, atol=1e-14, err_msg=msg) | |
def test_multipoint_2d(self, method, rescale): | |
x = np.array([(0,0), (-0.5,-0.5), (-0.5,0.5), (0.5, 0.5), (0.25, 0.3)], | |
dtype=np.float64) | |
y = np.arange(x.shape[0], dtype=np.float64) | |
xi = x[:,None,:] + np.array([0,0,0])[None,:,None] | |
msg = repr((method, rescale)) | |
yi = griddata(x, y, xi, method=method, rescale=rescale) | |
assert yi.shape == (5, 3), msg | |
xp_assert_close(yi, np.tile(y[:,None], (1, 3)), | |
atol=1e-14, err_msg=msg) | |
def test_complex_2d(self, method, rescale): | |
x = np.array([(0,0), (-0.5,-0.5), (-0.5,0.5), (0.5, 0.5), (0.25, 0.3)], | |
dtype=np.float64) | |
y = np.arange(x.shape[0], dtype=np.float64) | |
y = y - 2j*y[::-1] | |
xi = x[:,None,:] + np.array([0,0,0])[None,:,None] | |
msg = repr((method, rescale)) | |
yi = griddata(x, y, xi, method=method, rescale=rescale) | |
assert yi.shape == (5, 3) | |
xp_assert_close(yi, np.tile(y[:,None], (1, 3)), | |
atol=1e-14, err_msg=msg) | |
def test_1d(self, method): | |
x = np.array([1, 2.5, 3, 4.5, 5, 6]) | |
y = np.array([1, 2, 0, 3.9, 2, 1]) | |
xp_assert_close(griddata(x, y, x, method=method), y, | |
err_msg=method, atol=1e-14) | |
xp_assert_close(griddata(x.reshape(6, 1), y, x, method=method), y, | |
err_msg=method, atol=1e-14) | |
xp_assert_close(griddata((x,), y, (x,), method=method), y, | |
err_msg=method, atol=1e-14) | |
def test_1d_borders(self): | |
# Test for nearest neighbor case with xi outside | |
# the range of the values. | |
x = np.array([1, 2.5, 3, 4.5, 5, 6]) | |
y = np.array([1, 2, 0, 3.9, 2, 1]) | |
xi = np.array([0.9, 6.5]) | |
yi_should = np.array([1.0, 1.0]) | |
method = 'nearest' | |
xp_assert_close(griddata(x, y, xi, | |
method=method), yi_should, | |
err_msg=method, | |
atol=1e-14) | |
xp_assert_close(griddata(x.reshape(6, 1), y, xi, | |
method=method), yi_should, | |
err_msg=method, | |
atol=1e-14) | |
xp_assert_close(griddata((x, ), y, (xi, ), | |
method=method), yi_should, | |
err_msg=method, | |
atol=1e-14) | |
def test_1d_unsorted(self, method): | |
x = np.array([2.5, 1, 4.5, 5, 6, 3]) | |
y = np.array([1, 2, 0, 3.9, 2, 1]) | |
xp_assert_close(griddata(x, y, x, method=method), y, | |
err_msg=method, atol=1e-10) | |
xp_assert_close(griddata(x.reshape(6, 1), y, x, method=method), y, | |
err_msg=method, atol=1e-10) | |
xp_assert_close(griddata((x,), y, (x,), method=method), y, | |
err_msg=method, atol=1e-10) | |
def test_square_rescale_manual(self, method): | |
points = np.array([(0,0), (0,100), (10,100), (10,0), (1, 5)], dtype=np.float64) | |
points_rescaled = np.array([(0,0), (0,1), (1,1), (1,0), (0.1, 0.05)], | |
dtype=np.float64) | |
values = np.array([1., 2., -3., 5., 9.], dtype=np.float64) | |
xx, yy = np.broadcast_arrays(np.linspace(0, 10, 14)[:,None], | |
np.linspace(0, 100, 14)[None,:]) | |
xx = xx.ravel() | |
yy = yy.ravel() | |
xi = np.array([xx, yy]).T.copy() | |
msg = method | |
zi = griddata(points_rescaled, values, xi/np.array([10, 100.]), | |
method=method) | |
zi_rescaled = griddata(points, values, xi, method=method, | |
rescale=True) | |
xp_assert_close(zi, zi_rescaled, err_msg=msg, | |
atol=1e-12) | |
def test_xi_1d(self, method): | |
# Check that 1-D xi is interpreted as a coordinate | |
x = np.array([(0,0), (-0.5,-0.5), (-0.5,0.5), (0.5, 0.5), (0.25, 0.3)], | |
dtype=np.float64) | |
y = np.arange(x.shape[0], dtype=np.float64) | |
y = y - 2j*y[::-1] | |
xi = np.array([0.5, 0.5]) | |
p1 = griddata(x, y, xi, method=method) | |
p2 = griddata(x, y, xi[None,:], method=method) | |
xp_assert_close(p1, p2, err_msg=method) | |
xi1 = np.array([0.5]) | |
xi3 = np.array([0.5, 0.5, 0.5]) | |
assert_raises(ValueError, griddata, x, y, xi1, | |
method=method) | |
assert_raises(ValueError, griddata, x, y, xi3, | |
method=method) | |
class TestNearestNDInterpolator: | |
def test_nearest_options(self): | |
# smoke test that NearestNDInterpolator accept cKDTree options | |
npts, nd = 4, 3 | |
x = np.arange(npts*nd).reshape((npts, nd)) | |
y = np.arange(npts) | |
nndi = NearestNDInterpolator(x, y) | |
opts = {'balanced_tree': False, 'compact_nodes': False} | |
nndi_o = NearestNDInterpolator(x, y, tree_options=opts) | |
xp_assert_close(nndi(x), nndi_o(x), atol=1e-14) | |
def test_nearest_list_argument(self): | |
nd = np.array([[0, 0, 0, 0, 1, 0, 1], | |
[0, 0, 0, 0, 0, 1, 1], | |
[0, 0, 0, 0, 1, 1, 2]]) | |
d = nd[:, 3:] | |
# z is np.array | |
NI = NearestNDInterpolator((d[0], d[1]), d[2]) | |
xp_assert_equal(NI([0.1, 0.9], [0.1, 0.9]), [0.0, 2.0]) | |
# z is list | |
NI = NearestNDInterpolator((d[0], d[1]), list(d[2])) | |
xp_assert_equal(NI([0.1, 0.9], [0.1, 0.9]), [0.0, 2.0]) | |
def test_nearest_query_options(self): | |
nd = np.array([[0, 0.5, 0, 1], | |
[0, 0, 0.5, 1], | |
[0, 1, 1, 2]]) | |
delta = 0.1 | |
query_points = [0 + delta, 1 + delta], [0 + delta, 1 + delta] | |
# case 1 - query max_dist is smaller than | |
# the query points' nearest distance to nd. | |
NI = NearestNDInterpolator((nd[0], nd[1]), nd[2]) | |
distance_upper_bound = np.sqrt(delta ** 2 + delta ** 2) - 1e-7 | |
xp_assert_equal(NI(query_points, distance_upper_bound=distance_upper_bound), | |
[np.nan, np.nan]) | |
# case 2 - query p is inf, will return [0, 2] | |
distance_upper_bound = np.sqrt(delta ** 2 + delta ** 2) - 1e-7 | |
p = np.inf | |
xp_assert_equal( | |
NI(query_points, distance_upper_bound=distance_upper_bound, p=p), | |
[0.0, 2.0] | |
) | |
# case 3 - query max_dist is larger, so should return non np.nan | |
distance_upper_bound = np.sqrt(delta ** 2 + delta ** 2) + 1e-7 | |
xp_assert_equal( | |
NI(query_points, distance_upper_bound=distance_upper_bound), | |
[0.0, 2.0] | |
) | |
def test_nearest_query_valid_inputs(self): | |
nd = np.array([[0, 1, 0, 1], | |
[0, 0, 1, 1], | |
[0, 1, 1, 2]]) | |
NI = NearestNDInterpolator((nd[0], nd[1]), nd[2]) | |
with assert_raises(TypeError): | |
NI([0.5, 0.5], query_options="not a dictionary") | |
def test_concurrency(self): | |
npts, nd = 50, 3 | |
x = np.arange(npts * nd).reshape((npts, nd)) | |
y = np.arange(npts) | |
nndi = NearestNDInterpolator(x, y) | |
def worker_fn(_, spl): | |
spl(x) | |
_run_concurrent_barrier(10, worker_fn, nndi) | |
class TestNDInterpolators: | |
def test_broadcastable_input(self, interpolator): | |
# input data | |
rng = np.random.RandomState(0) | |
x = rng.random(10) | |
y = rng.random(10) | |
z = np.hypot(x, y) | |
# x-y grid for interpolation | |
X = np.linspace(min(x), max(x)) | |
Y = np.linspace(min(y), max(y)) | |
X, Y = np.meshgrid(X, Y) | |
XY = np.vstack((X.ravel(), Y.ravel())).T | |
interp = interpolator(list(zip(x, y)), z) | |
# single array input | |
interp_points0 = interp(XY) | |
# tuple input | |
interp_points1 = interp((X, Y)) | |
interp_points2 = interp((X, 0.0)) | |
# broadcastable input | |
interp_points3 = interp(X, Y) | |
interp_points4 = interp(X, 0.0) | |
assert (interp_points0.size == | |
interp_points1.size == | |
interp_points2.size == | |
interp_points3.size == | |
interp_points4.size) | |
def test_read_only(self, interpolator): | |
# input data | |
rng = np.random.RandomState(0) | |
xy = rng.random((10, 2)) | |
x, y = xy[:, 0], xy[:, 1] | |
z = np.hypot(x, y) | |
# interpolation points | |
XY = rng.random((50, 2)) | |
xy.setflags(write=False) | |
z.setflags(write=False) | |
XY.setflags(write=False) | |
interp = interpolator(xy, z) | |
interp(XY) | |