|
"""Includes test functions for fftpack.helper module |
|
|
|
Copied from fftpack.helper by Pearu Peterson, October 2005 |
|
Modified for Array API, 2023 |
|
|
|
""" |
|
from scipy.fft._helper import next_fast_len, prev_fast_len, _init_nd_shape_and_axes |
|
from numpy.testing import assert_equal |
|
from pytest import raises as assert_raises |
|
import pytest |
|
import numpy as np |
|
import sys |
|
from scipy.conftest import array_api_compatible |
|
from scipy._lib._array_api import ( |
|
xp_assert_close, get_xp_devices, xp_device, array_namespace |
|
) |
|
from scipy import fft |
|
|
|
pytestmark = [array_api_compatible, pytest.mark.usefixtures("skip_xp_backends")] |
|
skip_xp_backends = pytest.mark.skip_xp_backends |
|
|
|
_5_smooth_numbers = [ |
|
2, 3, 4, 5, 6, 8, 9, 10, |
|
2 * 3 * 5, |
|
2**3 * 3**5, |
|
2**3 * 3**3 * 5**2, |
|
] |
|
|
|
def test_next_fast_len(): |
|
for n in _5_smooth_numbers: |
|
assert_equal(next_fast_len(n), n) |
|
|
|
|
|
def _assert_n_smooth(x, n): |
|
x_orig = x |
|
if n < 2: |
|
assert False |
|
|
|
while True: |
|
q, r = divmod(x, 2) |
|
if r != 0: |
|
break |
|
x = q |
|
|
|
for d in range(3, n+1, 2): |
|
while True: |
|
q, r = divmod(x, d) |
|
if r != 0: |
|
break |
|
x = q |
|
|
|
assert x == 1, \ |
|
f'x={x_orig} is not {n}-smooth, remainder={x}' |
|
|
|
|
|
@skip_xp_backends(np_only=True) |
|
class TestNextFastLen: |
|
|
|
def test_next_fast_len(self): |
|
np.random.seed(1234) |
|
|
|
def nums(): |
|
yield from range(1, 1000) |
|
yield 2**5 * 3**5 * 4**5 + 1 |
|
|
|
for n in nums(): |
|
m = next_fast_len(n) |
|
_assert_n_smooth(m, 11) |
|
assert m == next_fast_len(n, False) |
|
|
|
m = next_fast_len(n, True) |
|
_assert_n_smooth(m, 5) |
|
|
|
def test_np_integers(self): |
|
ITYPES = [np.int16, np.int32, np.int64, np.uint16, np.uint32, np.uint64] |
|
for ityp in ITYPES: |
|
x = ityp(12345) |
|
testN = next_fast_len(x) |
|
assert_equal(testN, next_fast_len(int(x))) |
|
|
|
def testnext_fast_len_small(self): |
|
hams = { |
|
1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 8, 8: 8, 14: 15, 15: 15, |
|
16: 16, 17: 18, 1021: 1024, 1536: 1536, 51200000: 51200000 |
|
} |
|
for x, y in hams.items(): |
|
assert_equal(next_fast_len(x, True), y) |
|
|
|
@pytest.mark.xfail(sys.maxsize < 2**32, |
|
reason="Hamming Numbers too large for 32-bit", |
|
raises=ValueError, strict=True) |
|
def testnext_fast_len_big(self): |
|
hams = { |
|
510183360: 510183360, 510183360 + 1: 512000000, |
|
511000000: 512000000, |
|
854296875: 854296875, 854296875 + 1: 859963392, |
|
196608000000: 196608000000, 196608000000 + 1: 196830000000, |
|
8789062500000: 8789062500000, 8789062500000 + 1: 8796093022208, |
|
206391214080000: 206391214080000, |
|
206391214080000 + 1: 206624260800000, |
|
470184984576000: 470184984576000, |
|
470184984576000 + 1: 470715894135000, |
|
7222041363087360: 7222041363087360, |
|
7222041363087360 + 1: 7230196133913600, |
|
|
|
11920928955078125: 11920928955078125, |
|
11920928955078125 - 1: 11920928955078125, |
|
|
|
16677181699666569: 16677181699666569, |
|
16677181699666569 - 1: 16677181699666569, |
|
|
|
18014398509481984: 18014398509481984, |
|
18014398509481984 - 1: 18014398509481984, |
|
|
|
19200000000000000: 19200000000000000, |
|
19200000000000000 + 1: 19221679687500000, |
|
288230376151711744: 288230376151711744, |
|
288230376151711744 + 1: 288325195312500000, |
|
288325195312500000 - 1: 288325195312500000, |
|
288325195312500000: 288325195312500000, |
|
288325195312500000 + 1: 288555831593533440, |
|
} |
|
for x, y in hams.items(): |
|
assert_equal(next_fast_len(x, True), y) |
|
|
|
def test_keyword_args(self): |
|
assert next_fast_len(11, real=True) == 12 |
|
assert next_fast_len(target=7, real=False) == 7 |
|
|
|
@skip_xp_backends(np_only=True) |
|
class TestPrevFastLen: |
|
|
|
def test_prev_fast_len(self): |
|
np.random.seed(1234) |
|
|
|
def nums(): |
|
yield from range(1, 1000) |
|
yield 2**5 * 3**5 * 4**5 + 1 |
|
|
|
for n in nums(): |
|
m = prev_fast_len(n) |
|
_assert_n_smooth(m, 11) |
|
assert m == prev_fast_len(n, False) |
|
|
|
m = prev_fast_len(n, True) |
|
_assert_n_smooth(m, 5) |
|
|
|
def test_np_integers(self): |
|
ITYPES = [np.int16, np.int32, np.int64, np.uint16, np.uint32, |
|
np.uint64] |
|
for ityp in ITYPES: |
|
x = ityp(12345) |
|
testN = prev_fast_len(x) |
|
assert_equal(testN, prev_fast_len(int(x))) |
|
|
|
testN = prev_fast_len(x, real=True) |
|
assert_equal(testN, prev_fast_len(int(x), real=True)) |
|
|
|
def testprev_fast_len_small(self): |
|
hams = { |
|
1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 6, 8: 8, 14: 12, 15: 15, |
|
16: 16, 17: 16, 1021: 1000, 1536: 1536, 51200000: 51200000 |
|
} |
|
for x, y in hams.items(): |
|
assert_equal(prev_fast_len(x, True), y) |
|
|
|
hams = { |
|
1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7, 8: 8, 9: 9, 10: 10, |
|
11: 11, 12: 12, 13: 12, 14: 14, 15: 15, 16: 16, 17: 16, 18: 18, |
|
19: 18, 20: 20, 21: 21, 22: 22, 120: 120, 121: 121, 122: 121, |
|
1021: 1008, 1536: 1536, 51200000: 51200000 |
|
} |
|
for x, y in hams.items(): |
|
assert_equal(prev_fast_len(x, False), y) |
|
|
|
@pytest.mark.xfail(sys.maxsize < 2**32, |
|
reason="Hamming Numbers too large for 32-bit", |
|
raises=ValueError, strict=True) |
|
def testprev_fast_len_big(self): |
|
hams = { |
|
|
|
510183360: 510183360, |
|
510183360 + 1: 510183360, |
|
510183360 - 1: 509607936, |
|
|
|
511000000: 510183360, |
|
511000000 + 1: 510183360, |
|
511000000 - 1: 510183360, |
|
|
|
854296875: 854296875, |
|
854296875 + 1: 854296875, |
|
854296875 - 1: 850305600, |
|
|
|
196608000000: 196608000000, |
|
196608000000 + 1: 196608000000, |
|
196608000000 - 1: 195910410240, |
|
|
|
8789062500000: 8789062500000, |
|
8789062500000 + 1: 8789062500000, |
|
8789062500000 - 1: 8748000000000, |
|
|
|
206391214080000: 206391214080000, |
|
206391214080000 + 1: 206391214080000, |
|
206391214080000 - 1: 206158430208000, |
|
|
|
470184984576000: 470184984576000, |
|
470184984576000 + 1: 470184984576000, |
|
470184984576000 - 1: 469654673817600, |
|
|
|
7222041363087360: 7222041363087360, |
|
7222041363087360 + 1: 7222041363087360, |
|
7222041363087360 - 1: 7213895789838336, |
|
|
|
11920928955078125: 11920928955078125, |
|
11920928955078125 + 1: 11920928955078125, |
|
11920928955078125 - 1: 11901557422080000, |
|
|
|
16677181699666569: 16677181699666569, |
|
16677181699666569 + 1: 16677181699666569, |
|
16677181699666569 - 1: 16607531250000000, |
|
|
|
18014398509481984: 18014398509481984, |
|
18014398509481984 + 1: 18014398509481984, |
|
18014398509481984 - 1: 18000000000000000, |
|
|
|
19200000000000000: 19200000000000000, |
|
19200000000000000 + 1: 19200000000000000, |
|
19200000000000000 - 1: 19131876000000000, |
|
|
|
288230376151711744: 288230376151711744, |
|
288230376151711744 + 1: 288230376151711744, |
|
288230376151711744 - 1: 288000000000000000, |
|
|
|
288325195312500000: 288325195312500000, |
|
288325195312500000 + 1: 288325195312500000, |
|
288325195312500000 - 1: 288230376151711744, |
|
} |
|
for x, y in hams.items(): |
|
assert_equal(prev_fast_len(x, True), y) |
|
|
|
def test_keyword_args(self): |
|
assert prev_fast_len(11, real=True) == 10 |
|
assert prev_fast_len(target=7, real=False) == 7 |
|
|
|
|
|
@skip_xp_backends(cpu_only=True) |
|
class Test_init_nd_shape_and_axes: |
|
|
|
def test_py_0d_defaults(self, xp): |
|
x = xp.asarray(4) |
|
shape = None |
|
axes = None |
|
|
|
shape_expected = () |
|
axes_expected = [] |
|
|
|
shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes) |
|
|
|
assert shape_res == shape_expected |
|
assert axes_res == axes_expected |
|
|
|
def test_xp_0d_defaults(self, xp): |
|
x = xp.asarray(7.) |
|
shape = None |
|
axes = None |
|
|
|
shape_expected = () |
|
axes_expected = [] |
|
|
|
shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes) |
|
|
|
assert shape_res == shape_expected |
|
assert axes_res == axes_expected |
|
|
|
def test_py_1d_defaults(self, xp): |
|
x = xp.asarray([1, 2, 3]) |
|
shape = None |
|
axes = None |
|
|
|
shape_expected = (3,) |
|
axes_expected = [0] |
|
|
|
shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes) |
|
|
|
assert shape_res == shape_expected |
|
assert axes_res == axes_expected |
|
|
|
def test_xp_1d_defaults(self, xp): |
|
x = xp.arange(0, 1, .1) |
|
shape = None |
|
axes = None |
|
|
|
shape_expected = (10,) |
|
axes_expected = [0] |
|
|
|
shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes) |
|
|
|
assert shape_res == shape_expected |
|
assert axes_res == axes_expected |
|
|
|
def test_py_2d_defaults(self, xp): |
|
x = xp.asarray([[1, 2, 3, 4], |
|
[5, 6, 7, 8]]) |
|
shape = None |
|
axes = None |
|
|
|
shape_expected = (2, 4) |
|
axes_expected = [0, 1] |
|
|
|
shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes) |
|
|
|
assert shape_res == shape_expected |
|
assert axes_res == axes_expected |
|
|
|
def test_xp_2d_defaults(self, xp): |
|
x = xp.arange(0, 1, .1) |
|
x = xp.reshape(x, (5, 2)) |
|
shape = None |
|
axes = None |
|
|
|
shape_expected = (5, 2) |
|
axes_expected = [0, 1] |
|
|
|
shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes) |
|
|
|
assert shape_res == shape_expected |
|
assert axes_res == axes_expected |
|
|
|
def test_xp_5d_defaults(self, xp): |
|
x = xp.zeros([6, 2, 5, 3, 4]) |
|
shape = None |
|
axes = None |
|
|
|
shape_expected = (6, 2, 5, 3, 4) |
|
axes_expected = [0, 1, 2, 3, 4] |
|
|
|
shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes) |
|
|
|
assert shape_res == shape_expected |
|
assert axes_res == axes_expected |
|
|
|
def test_xp_5d_set_shape(self, xp): |
|
x = xp.zeros([6, 2, 5, 3, 4]) |
|
shape = [10, -1, -1, 1, 4] |
|
axes = None |
|
|
|
shape_expected = (10, 2, 5, 1, 4) |
|
axes_expected = [0, 1, 2, 3, 4] |
|
|
|
shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes) |
|
|
|
assert shape_res == shape_expected |
|
assert axes_res == axes_expected |
|
|
|
def test_xp_5d_set_axes(self, xp): |
|
x = xp.zeros([6, 2, 5, 3, 4]) |
|
shape = None |
|
axes = [4, 1, 2] |
|
|
|
shape_expected = (4, 2, 5) |
|
axes_expected = [4, 1, 2] |
|
|
|
shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes) |
|
|
|
assert shape_res == shape_expected |
|
assert axes_res == axes_expected |
|
|
|
def test_xp_5d_set_shape_axes(self, xp): |
|
x = xp.zeros([6, 2, 5, 3, 4]) |
|
shape = [10, -1, 2] |
|
axes = [1, 0, 3] |
|
|
|
shape_expected = (10, 6, 2) |
|
axes_expected = [1, 0, 3] |
|
|
|
shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes) |
|
|
|
assert shape_res == shape_expected |
|
assert axes_res == axes_expected |
|
|
|
def test_shape_axes_subset(self, xp): |
|
x = xp.zeros((2, 3, 4, 5)) |
|
shape, axes = _init_nd_shape_and_axes(x, shape=(5, 5, 5), axes=None) |
|
|
|
assert shape == (5, 5, 5) |
|
assert axes == [1, 2, 3] |
|
|
|
def test_errors(self, xp): |
|
x = xp.zeros(1) |
|
with assert_raises(ValueError, match="axes must be a scalar or " |
|
"iterable of integers"): |
|
_init_nd_shape_and_axes(x, shape=None, axes=[[1, 2], [3, 4]]) |
|
|
|
with assert_raises(ValueError, match="axes must be a scalar or " |
|
"iterable of integers"): |
|
_init_nd_shape_and_axes(x, shape=None, axes=[1., 2., 3., 4.]) |
|
|
|
with assert_raises(ValueError, |
|
match="axes exceeds dimensionality of input"): |
|
_init_nd_shape_and_axes(x, shape=None, axes=[1]) |
|
|
|
with assert_raises(ValueError, |
|
match="axes exceeds dimensionality of input"): |
|
_init_nd_shape_and_axes(x, shape=None, axes=[-2]) |
|
|
|
with assert_raises(ValueError, |
|
match="all axes must be unique"): |
|
_init_nd_shape_and_axes(x, shape=None, axes=[0, 0]) |
|
|
|
with assert_raises(ValueError, match="shape must be a scalar or " |
|
"iterable of integers"): |
|
_init_nd_shape_and_axes(x, shape=[[1, 2], [3, 4]], axes=None) |
|
|
|
with assert_raises(ValueError, match="shape must be a scalar or " |
|
"iterable of integers"): |
|
_init_nd_shape_and_axes(x, shape=[1., 2., 3., 4.], axes=None) |
|
|
|
with assert_raises(ValueError, |
|
match="when given, axes and shape arguments" |
|
" have to be of the same length"): |
|
_init_nd_shape_and_axes(xp.zeros([1, 1, 1, 1]), |
|
shape=[1, 2, 3], axes=[1]) |
|
|
|
with assert_raises(ValueError, |
|
match="invalid number of data points" |
|
r" \(\[0\]\) specified"): |
|
_init_nd_shape_and_axes(x, shape=[0], axes=None) |
|
|
|
with assert_raises(ValueError, |
|
match="invalid number of data points" |
|
r" \(\[-2\]\) specified"): |
|
_init_nd_shape_and_axes(x, shape=-2, axes=None) |
|
|
|
|
|
class TestFFTShift: |
|
|
|
def test_definition(self, xp): |
|
x = xp.asarray([0., 1, 2, 3, 4, -4, -3, -2, -1]) |
|
y = xp.asarray([-4., -3, -2, -1, 0, 1, 2, 3, 4]) |
|
xp_assert_close(fft.fftshift(x), y) |
|
xp_assert_close(fft.ifftshift(y), x) |
|
x = xp.asarray([0., 1, 2, 3, 4, -5, -4, -3, -2, -1]) |
|
y = xp.asarray([-5., -4, -3, -2, -1, 0, 1, 2, 3, 4]) |
|
xp_assert_close(fft.fftshift(x), y) |
|
xp_assert_close(fft.ifftshift(y), x) |
|
|
|
def test_inverse(self, xp): |
|
for n in [1, 4, 9, 100, 211]: |
|
x = xp.asarray(np.random.random((n,))) |
|
xp_assert_close(fft.ifftshift(fft.fftshift(x)), x) |
|
|
|
@skip_xp_backends('cupy', reason='cupy/cupy#8393') |
|
def test_axes_keyword(self, xp): |
|
freqs = xp.asarray([[0., 1, 2], [3, 4, -4], [-3, -2, -1]]) |
|
shifted = xp.asarray([[-1., -3, -2], [2, 0, 1], [-4, 3, 4]]) |
|
xp_assert_close(fft.fftshift(freqs, axes=(0, 1)), shifted) |
|
xp_assert_close(fft.fftshift(freqs, axes=0), fft.fftshift(freqs, axes=(0,))) |
|
xp_assert_close(fft.ifftshift(shifted, axes=(0, 1)), freqs) |
|
xp_assert_close(fft.ifftshift(shifted, axes=0), |
|
fft.ifftshift(shifted, axes=(0,))) |
|
xp_assert_close(fft.fftshift(freqs), shifted) |
|
xp_assert_close(fft.ifftshift(shifted), freqs) |
|
|
|
@skip_xp_backends('cupy', reason='cupy/cupy#8393') |
|
def test_uneven_dims(self, xp): |
|
""" Test 2D input, which has uneven dimension sizes """ |
|
freqs = xp.asarray([ |
|
[0, 1], |
|
[2, 3], |
|
[4, 5] |
|
], dtype=xp.float64) |
|
|
|
|
|
shift_dim0 = xp.asarray([ |
|
[4, 5], |
|
[0, 1], |
|
[2, 3] |
|
], dtype=xp.float64) |
|
xp_assert_close(fft.fftshift(freqs, axes=0), shift_dim0) |
|
xp_assert_close(fft.ifftshift(shift_dim0, axes=0), freqs) |
|
xp_assert_close(fft.fftshift(freqs, axes=(0,)), shift_dim0) |
|
xp_assert_close(fft.ifftshift(shift_dim0, axes=[0]), freqs) |
|
|
|
|
|
shift_dim1 = xp.asarray([ |
|
[1, 0], |
|
[3, 2], |
|
[5, 4] |
|
], dtype=xp.float64) |
|
xp_assert_close(fft.fftshift(freqs, axes=1), shift_dim1) |
|
xp_assert_close(fft.ifftshift(shift_dim1, axes=1), freqs) |
|
|
|
|
|
shift_dim_both = xp.asarray([ |
|
[5, 4], |
|
[1, 0], |
|
[3, 2] |
|
], dtype=xp.float64) |
|
xp_assert_close(fft.fftshift(freqs, axes=(0, 1)), shift_dim_both) |
|
xp_assert_close(fft.ifftshift(shift_dim_both, axes=(0, 1)), freqs) |
|
xp_assert_close(fft.fftshift(freqs, axes=[0, 1]), shift_dim_both) |
|
xp_assert_close(fft.ifftshift(shift_dim_both, axes=[0, 1]), freqs) |
|
|
|
|
|
xp_assert_close(fft.fftshift(freqs, axes=None), shift_dim_both) |
|
xp_assert_close(fft.ifftshift(shift_dim_both, axes=None), freqs) |
|
xp_assert_close(fft.fftshift(freqs), shift_dim_both) |
|
xp_assert_close(fft.ifftshift(shift_dim_both), freqs) |
|
|
|
|
|
@skip_xp_backends("cupy", |
|
reason="CuPy has not implemented the `device` param") |
|
@skip_xp_backends("jax.numpy", |
|
reason="JAX has not implemented the `device` param") |
|
class TestFFTFreq: |
|
|
|
def test_definition(self, xp): |
|
x = xp.asarray([0, 1, 2, 3, 4, -4, -3, -2, -1], dtype=xp.float64) |
|
x2 = xp.asarray([0, 1, 2, 3, 4, -5, -4, -3, -2, -1], dtype=xp.float64) |
|
|
|
|
|
|
|
y = 9 * fft.fftfreq(9, xp=xp) |
|
xp_assert_close(y, x, check_dtype=False, check_namespace=True) |
|
|
|
y = 9 * xp.pi * fft.fftfreq(9, xp.pi, xp=xp) |
|
xp_assert_close(y, x, check_dtype=False) |
|
|
|
y = 10 * fft.fftfreq(10, xp=xp) |
|
xp_assert_close(y, x2, check_dtype=False) |
|
|
|
y = 10 * xp.pi * fft.fftfreq(10, xp.pi, xp=xp) |
|
xp_assert_close(y, x2, check_dtype=False) |
|
|
|
def test_device(self, xp): |
|
xp_test = array_namespace(xp.empty(0)) |
|
devices = get_xp_devices(xp) |
|
for d in devices: |
|
y = fft.fftfreq(9, xp=xp, device=d) |
|
x = xp_test.empty(0, device=d) |
|
assert xp_device(y) == xp_device(x) |
|
|
|
|
|
@skip_xp_backends("cupy", |
|
reason="CuPy has not implemented the `device` param") |
|
@skip_xp_backends("jax.numpy", |
|
reason="JAX has not implemented the `device` param") |
|
class TestRFFTFreq: |
|
|
|
def test_definition(self, xp): |
|
x = xp.asarray([0, 1, 2, 3, 4], dtype=xp.float64) |
|
x2 = xp.asarray([0, 1, 2, 3, 4, 5], dtype=xp.float64) |
|
|
|
|
|
|
|
y = 9 * fft.rfftfreq(9, xp=xp) |
|
xp_assert_close(y, x, check_dtype=False, check_namespace=True) |
|
|
|
y = 9 * xp.pi * fft.rfftfreq(9, xp.pi, xp=xp) |
|
xp_assert_close(y, x, check_dtype=False) |
|
|
|
y = 10 * fft.rfftfreq(10, xp=xp) |
|
xp_assert_close(y, x2, check_dtype=False) |
|
|
|
y = 10 * xp.pi * fft.rfftfreq(10, xp.pi, xp=xp) |
|
xp_assert_close(y, x2, check_dtype=False) |
|
|
|
def test_device(self, xp): |
|
xp_test = array_namespace(xp.empty(0)) |
|
devices = get_xp_devices(xp) |
|
for d in devices: |
|
y = fft.rfftfreq(9, xp=xp, device=d) |
|
x = xp_test.empty(0, device=d) |
|
assert xp_device(y) == xp_device(x) |
|
|