spam-classifier
/
venv
/lib
/python3.11
/site-packages
/scipy
/differentiate
/tests
/test_differentiate.py
import math | |
import pytest | |
import numpy as np | |
from scipy.conftest import array_api_compatible | |
import scipy._lib._elementwise_iterative_method as eim | |
from scipy._lib._array_api_no_0d import xp_assert_close, xp_assert_equal, xp_assert_less | |
from scipy._lib._array_api import is_numpy, is_torch, array_namespace | |
from scipy import stats, optimize, special | |
from scipy.differentiate import derivative, jacobian, hessian | |
from scipy.differentiate._differentiate import _EERRORINCREASE | |
pytestmark = [array_api_compatible, pytest.mark.usefixtures("skip_xp_backends")] | |
array_api_strict_skip_reason = 'Array API does not support fancy indexing assignment.' | |
jax_skip_reason = 'JAX arrays do not support item assignment.' | |
class TestDerivative: | |
def f(self, x): | |
return special.ndtr(x) | |
def test_basic(self, x, xp): | |
# Invert distribution CDF and compare against distribution `ppf` | |
default_dtype = xp.asarray(1.).dtype | |
res = derivative(self.f, xp.asarray(x, dtype=default_dtype)) | |
ref = xp.asarray(stats.norm().pdf(x), dtype=default_dtype) | |
xp_assert_close(res.df, ref) | |
# This would be nice, but doesn't always work out. `error` is an | |
# estimate, not a bound. | |
if not is_torch(xp): | |
xp_assert_less(xp.abs(res.df - ref), res.error) | |
def test_accuracy(self, case): | |
distname, params = case | |
dist = getattr(stats, distname)(*params) | |
x = dist.median() + 0.1 | |
res = derivative(dist.cdf, x) | |
ref = dist.pdf(x) | |
xp_assert_close(res.df, ref, atol=1e-10) | |
def test_vectorization(self, order, shape, xp): | |
# Test for correct functionality, output shapes, and dtypes for various | |
# input shapes. | |
x = np.linspace(-0.05, 1.05, 12).reshape(shape) if shape else 0.6 | |
n = np.size(x) | |
state = {} | |
def _derivative_single(x): | |
return derivative(self.f, x, order=order) | |
def f(x, *args, **kwargs): | |
state['nit'] += 1 | |
state['feval'] += 1 if (x.size == n or x.ndim <=1) else x.shape[-1] | |
return self.f(x, *args, **kwargs) | |
state['nit'] = -1 | |
state['feval'] = 0 | |
res = derivative(f, xp.asarray(x, dtype=xp.float64), order=order) | |
refs = _derivative_single(x).ravel() | |
ref_x = [ref.x for ref in refs] | |
xp_assert_close(xp.reshape(res.x, (-1,)), xp.asarray(ref_x)) | |
ref_df = [ref.df for ref in refs] | |
xp_assert_close(xp.reshape(res.df, (-1,)), xp.asarray(ref_df)) | |
ref_error = [ref.error for ref in refs] | |
xp_assert_close(xp.reshape(res.error, (-1,)), xp.asarray(ref_error), | |
atol=1e-12) | |
ref_success = [bool(ref.success) for ref in refs] | |
xp_assert_equal(xp.reshape(res.success, (-1,)), xp.asarray(ref_success)) | |
ref_flag = [np.int32(ref.status) for ref in refs] | |
xp_assert_equal(xp.reshape(res.status, (-1,)), xp.asarray(ref_flag)) | |
ref_nfev = [np.int32(ref.nfev) for ref in refs] | |
xp_assert_equal(xp.reshape(res.nfev, (-1,)), xp.asarray(ref_nfev)) | |
if is_numpy(xp): # can't expect other backends to be exactly the same | |
assert xp.max(res.nfev) == state['feval'] | |
ref_nit = [np.int32(ref.nit) for ref in refs] | |
xp_assert_equal(xp.reshape(res.nit, (-1,)), xp.asarray(ref_nit)) | |
if is_numpy(xp): # can't expect other backends to be exactly the same | |
assert xp.max(res.nit) == state['nit'] | |
def test_flags(self, xp): | |
# Test cases that should produce different status flags; show that all | |
# can be produced simultaneously. | |
rng = np.random.default_rng(5651219684984213) | |
def f(xs, js): | |
f.nit += 1 | |
funcs = [lambda x: x - 2.5, # converges | |
lambda x: xp.exp(x)*rng.random(), # error increases | |
lambda x: xp.exp(x), # reaches maxiter due to order=2 | |
lambda x: xp.full_like(x, xp.nan)] # stops due to NaN | |
res = [funcs[int(j)](x) for x, j in zip(xs, xp.reshape(js, (-1,)))] | |
return xp.stack(res) | |
f.nit = 0 | |
args = (xp.arange(4, dtype=xp.int64),) | |
res = derivative(f, xp.ones(4, dtype=xp.float64), | |
tolerances=dict(rtol=1e-14), | |
order=2, args=args) | |
ref_flags = xp.asarray([eim._ECONVERGED, | |
_EERRORINCREASE, | |
eim._ECONVERR, | |
eim._EVALUEERR], dtype=xp.int32) | |
xp_assert_equal(res.status, ref_flags) | |
def test_flags_preserve_shape(self, xp): | |
# Same test as above but using `preserve_shape` option to simplify. | |
rng = np.random.default_rng(5651219684984213) | |
def f(x): | |
out = [x - 2.5, # converges | |
xp.exp(x)*rng.random(), # error increases | |
xp.exp(x), # reaches maxiter due to order=2 | |
xp.full_like(x, xp.nan)] # stops due to NaN | |
return xp.stack(out) | |
res = derivative(f, xp.asarray(1, dtype=xp.float64), | |
tolerances=dict(rtol=1e-14), | |
order=2, preserve_shape=True) | |
ref_flags = xp.asarray([eim._ECONVERGED, | |
_EERRORINCREASE, | |
eim._ECONVERR, | |
eim._EVALUEERR], dtype=xp.int32) | |
xp_assert_equal(res.status, ref_flags) | |
def test_preserve_shape(self, xp): | |
# Test `preserve_shape` option | |
def f(x): | |
out = [x, xp.sin(3*x), x+xp.sin(10*x), xp.sin(20*x)*(x-1)**2] | |
return xp.stack(out) | |
x = xp.asarray(0.) | |
ref = xp.asarray([xp.asarray(1), 3*xp.cos(3*x), 1+10*xp.cos(10*x), | |
20*xp.cos(20*x)*(x-1)**2 + 2*xp.sin(20*x)*(x-1)]) | |
res = derivative(f, x, preserve_shape=True) | |
xp_assert_close(res.df, ref) | |
def test_convergence(self, xp): | |
# Test that the convergence tolerances behave as expected | |
x = xp.asarray(1., dtype=xp.float64) | |
f = special.ndtr | |
ref = float(stats.norm.pdf(1.)) | |
tolerances0 = dict(atol=0, rtol=0) | |
tolerances = tolerances0.copy() | |
tolerances['atol'] = 1e-3 | |
res1 = derivative(f, x, tolerances=tolerances, order=4) | |
assert abs(res1.df - ref) < 1e-3 | |
tolerances['atol'] = 1e-6 | |
res2 = derivative(f, x, tolerances=tolerances, order=4) | |
assert abs(res2.df - ref) < 1e-6 | |
assert abs(res2.df - ref) < abs(res1.df - ref) | |
tolerances = tolerances0.copy() | |
tolerances['rtol'] = 1e-3 | |
res1 = derivative(f, x, tolerances=tolerances, order=4) | |
assert abs(res1.df - ref) < 1e-3 * ref | |
tolerances['rtol'] = 1e-6 | |
res2 = derivative(f, x, tolerances=tolerances, order=4) | |
assert abs(res2.df - ref) < 1e-6 * ref | |
assert abs(res2.df - ref) < abs(res1.df - ref) | |
def test_step_parameters(self, xp): | |
# Test that step factors have the expected effect on accuracy | |
x = xp.asarray(1., dtype=xp.float64) | |
f = special.ndtr | |
ref = float(stats.norm.pdf(1.)) | |
res1 = derivative(f, x, initial_step=0.5, maxiter=1) | |
res2 = derivative(f, x, initial_step=0.05, maxiter=1) | |
assert abs(res2.df - ref) < abs(res1.df - ref) | |
res1 = derivative(f, x, step_factor=2, maxiter=1) | |
res2 = derivative(f, x, step_factor=20, maxiter=1) | |
assert abs(res2.df - ref) < abs(res1.df - ref) | |
# `step_factor` can be less than 1: `initial_step` is the minimum step | |
kwargs = dict(order=4, maxiter=1, step_direction=0) | |
res = derivative(f, x, initial_step=0.5, step_factor=0.5, **kwargs) | |
ref = derivative(f, x, initial_step=1, step_factor=2, **kwargs) | |
xp_assert_close(res.df, ref.df, rtol=5e-15) | |
# This is a similar test for one-sided difference | |
kwargs = dict(order=2, maxiter=1, step_direction=1) | |
res = derivative(f, x, initial_step=1, step_factor=2, **kwargs) | |
ref = derivative(f, x, initial_step=1/np.sqrt(2), step_factor=0.5, **kwargs) | |
xp_assert_close(res.df, ref.df, rtol=5e-15) | |
kwargs['step_direction'] = -1 | |
res = derivative(f, x, initial_step=1, step_factor=2, **kwargs) | |
ref = derivative(f, x, initial_step=1/np.sqrt(2), step_factor=0.5, **kwargs) | |
xp_assert_close(res.df, ref.df, rtol=5e-15) | |
def test_step_direction(self, xp): | |
# test that `step_direction` works as expected | |
def f(x): | |
y = xp.exp(x) | |
y[(x < 0) + (x > 2)] = xp.nan | |
return y | |
x = xp.linspace(0, 2, 10) | |
step_direction = xp.zeros_like(x) | |
step_direction[x < 0.6], step_direction[x > 1.4] = 1, -1 | |
res = derivative(f, x, step_direction=step_direction) | |
xp_assert_close(res.df, xp.exp(x)) | |
assert xp.all(res.success) | |
def test_vectorized_step_direction_args(self, xp): | |
# test that `step_direction` and `args` are vectorized properly | |
def f(x, p): | |
return x ** p | |
def df(x, p): | |
return p * x ** (p - 1) | |
x = xp.reshape(xp.asarray([1, 2, 3, 4]), (-1, 1, 1)) | |
hdir = xp.reshape(xp.asarray([-1, 0, 1]), (1, -1, 1)) | |
p = xp.reshape(xp.asarray([2, 3]), (1, 1, -1)) | |
res = derivative(f, x, step_direction=hdir, args=(p,)) | |
ref = xp.broadcast_to(df(x, p), res.df.shape) | |
ref = xp.asarray(ref, dtype=xp.asarray(1.).dtype) | |
xp_assert_close(res.df, ref) | |
def test_initial_step(self, xp): | |
# Test that `initial_step` works as expected and is vectorized | |
def f(x): | |
return xp.exp(x) | |
x = xp.asarray(0., dtype=xp.float64) | |
step_direction = xp.asarray([-1, 0, 1]) | |
h0 = xp.reshape(xp.logspace(-3, 0, 10), (-1, 1)) | |
res = derivative(f, x, initial_step=h0, order=2, maxiter=1, | |
step_direction=step_direction) | |
err = xp.abs(res.df - f(x)) | |
# error should be smaller for smaller step sizes | |
assert xp.all(err[:-1, ...] < err[1:, ...]) | |
# results of vectorized call should match results with | |
# initial_step taken one at a time | |
for i in range(h0.shape[0]): | |
ref = derivative(f, x, initial_step=h0[i, 0], order=2, maxiter=1, | |
step_direction=step_direction) | |
xp_assert_close(res.df[i, :], ref.df, rtol=1e-14) | |
def test_maxiter_callback(self, xp): | |
# Test behavior of `maxiter` parameter and `callback` interface | |
x = xp.asarray(0.612814, dtype=xp.float64) | |
maxiter = 3 | |
def f(x): | |
res = special.ndtr(x) | |
return res | |
default_order = 8 | |
res = derivative(f, x, maxiter=maxiter, tolerances=dict(rtol=1e-15)) | |
assert not xp.any(res.success) | |
assert xp.all(res.nfev == default_order + 1 + (maxiter - 1)*2) | |
assert xp.all(res.nit == maxiter) | |
def callback(res): | |
callback.iter += 1 | |
callback.res = res | |
assert hasattr(res, 'x') | |
assert float(res.df) not in callback.dfs | |
callback.dfs.add(float(res.df)) | |
assert res.status == eim._EINPROGRESS | |
if callback.iter == maxiter: | |
raise StopIteration | |
callback.iter = -1 # callback called once before first iteration | |
callback.res = None | |
callback.dfs = set() | |
res2 = derivative(f, x, callback=callback, tolerances=dict(rtol=1e-15)) | |
# terminating with callback is identical to terminating due to maxiter | |
# (except for `status`) | |
for key in res.keys(): | |
if key == 'status': | |
assert res[key] == eim._ECONVERR | |
assert res2[key] == eim._ECALLBACK | |
else: | |
assert res2[key] == callback.res[key] == res[key] | |
def test_dtype(self, hdir, x, dtype, xp): | |
if dtype == 'float16' and not is_numpy(xp): | |
pytest.skip('float16 not tested for alternative backends') | |
# Test that dtypes are preserved | |
dtype = getattr(xp, dtype) | |
x = xp.asarray(x, dtype=dtype) | |
def f(x): | |
assert x.dtype == dtype | |
return xp.exp(x) | |
def callback(res): | |
assert res.x.dtype == dtype | |
assert res.df.dtype == dtype | |
assert res.error.dtype == dtype | |
res = derivative(f, x, order=4, step_direction=hdir, callback=callback) | |
assert res.x.dtype == dtype | |
assert res.df.dtype == dtype | |
assert res.error.dtype == dtype | |
eps = xp.finfo(dtype).eps | |
# not sure why torch is less accurate here; might be worth investigating | |
rtol = eps**0.5 * 50 if is_torch(xp) else eps**0.5 | |
xp_assert_close(res.df, xp.exp(res.x), rtol=rtol) | |
def test_input_validation(self, xp): | |
# Test input validation for appropriate error messages | |
one = xp.asarray(1) | |
message = '`f` must be callable.' | |
with pytest.raises(ValueError, match=message): | |
derivative(None, one) | |
message = 'Abscissae and function output must be real numbers.' | |
with pytest.raises(ValueError, match=message): | |
derivative(lambda x: x, xp.asarray(-4+1j)) | |
message = "When `preserve_shape=False`, the shape of the array..." | |
with pytest.raises(ValueError, match=message): | |
derivative(lambda x: [1, 2, 3], xp.asarray([-2, -3])) | |
message = 'Tolerances and step parameters must be non-negative...' | |
with pytest.raises(ValueError, match=message): | |
derivative(lambda x: x, one, tolerances=dict(atol=-1)) | |
with pytest.raises(ValueError, match=message): | |
derivative(lambda x: x, one, tolerances=dict(rtol='ekki')) | |
with pytest.raises(ValueError, match=message): | |
derivative(lambda x: x, one, step_factor=object()) | |
message = '`maxiter` must be a positive integer.' | |
with pytest.raises(ValueError, match=message): | |
derivative(lambda x: x, one, maxiter=1.5) | |
with pytest.raises(ValueError, match=message): | |
derivative(lambda x: x, one, maxiter=0) | |
message = '`order` must be a positive integer' | |
with pytest.raises(ValueError, match=message): | |
derivative(lambda x: x, one, order=1.5) | |
with pytest.raises(ValueError, match=message): | |
derivative(lambda x: x, one, order=0) | |
message = '`preserve_shape` must be True or False.' | |
with pytest.raises(ValueError, match=message): | |
derivative(lambda x: x, one, preserve_shape='herring') | |
message = '`callback` must be callable.' | |
with pytest.raises(ValueError, match=message): | |
derivative(lambda x: x, one, callback='shrubbery') | |
def test_special_cases(self, xp): | |
# Test edge cases and other special cases | |
# Test that integers are not passed to `f` | |
# (otherwise this would overflow) | |
def f(x): | |
xp_test = array_namespace(x) # needs `isdtype` | |
assert xp_test.isdtype(x.dtype, 'real floating') | |
return x ** 99 - 1 | |
if not is_torch(xp): # torch defaults to float32 | |
res = derivative(f, xp.asarray(7), tolerances=dict(rtol=1e-10)) | |
assert res.success | |
xp_assert_close(res.df, xp.asarray(99*7.**98)) | |
# Test invalid step size and direction | |
res = derivative(xp.exp, xp.asarray(1), step_direction=xp.nan) | |
xp_assert_equal(res.df, xp.asarray(xp.nan)) | |
xp_assert_equal(res.status, xp.asarray(-3, dtype=xp.int32)) | |
res = derivative(xp.exp, xp.asarray(1), initial_step=0) | |
xp_assert_equal(res.df, xp.asarray(xp.nan)) | |
xp_assert_equal(res.status, xp.asarray(-3, dtype=xp.int32)) | |
# Test that if success is achieved in the correct number | |
# of iterations if function is a polynomial. Ideally, all polynomials | |
# of order 0-2 would get exact result with 0 refinement iterations, | |
# all polynomials of order 3-4 would be differentiated exactly after | |
# 1 iteration, etc. However, it seems that `derivative` needs an | |
# extra iteration to detect convergence based on the error estimate. | |
for n in range(6): | |
x = xp.asarray(1.5, dtype=xp.float64) | |
def f(x): | |
return 2*x**n | |
ref = 2*n*x**(n-1) | |
res = derivative(f, x, maxiter=1, order=max(1, n)) | |
xp_assert_close(res.df, ref, rtol=1e-15) | |
xp_assert_equal(res.error, xp.asarray(xp.nan, dtype=xp.float64)) | |
res = derivative(f, x, order=max(1, n)) | |
assert res.success | |
assert res.nit == 2 | |
xp_assert_close(res.df, ref, rtol=1e-15) | |
# Test scalar `args` (not in tuple) | |
def f(x, c): | |
return c*x - 1 | |
res = derivative(f, xp.asarray(2), args=xp.asarray(3)) | |
xp_assert_close(res.df, xp.asarray(3.)) | |
# no need to run a test on multiple backends if it's xfailed | |
def test_saddle_gh18811(self, case): | |
# With default settings, `derivative` will not always converge when | |
# the true derivative is exactly zero. This tests that specifying a | |
# (tight) `atol` alleviates the problem. See discussion in gh-18811. | |
atol = 1e-16 | |
res = derivative(*case, step_direction=[-1, 0, 1], atol=atol) | |
assert np.all(res.success) | |
xp_assert_close(res.df, 0, atol=atol) | |
class JacobianHessianTest: | |
def test_iv(self, xp): | |
jh_func = self.jh_func.__func__ | |
# Test input validation | |
message = "Argument `x` must be at least 1-D." | |
with pytest.raises(ValueError, match=message): | |
jh_func(xp.sin, 1, tolerances=dict(atol=-1)) | |
# Confirm that other parameters are being passed to `derivative`, | |
# which raises an appropriate error message. | |
x = xp.ones(3) | |
func = optimize.rosen | |
message = 'Tolerances and step parameters must be non-negative scalars.' | |
with pytest.raises(ValueError, match=message): | |
jh_func(func, x, tolerances=dict(atol=-1)) | |
with pytest.raises(ValueError, match=message): | |
jh_func(func, x, tolerances=dict(rtol=-1)) | |
with pytest.raises(ValueError, match=message): | |
jh_func(func, x, step_factor=-1) | |
message = '`order` must be a positive integer.' | |
with pytest.raises(ValueError, match=message): | |
jh_func(func, x, order=-1) | |
message = '`maxiter` must be a positive integer.' | |
with pytest.raises(ValueError, match=message): | |
jh_func(func, x, maxiter=-1) | |
class TestJacobian(JacobianHessianTest): | |
jh_func = jacobian | |
# Example functions and Jacobians from Wikipedia: | |
# https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant#Examples | |
def f1(z, xp): | |
x, y = z | |
return xp.stack([x ** 2 * y, 5 * x + xp.sin(y)]) | |
def df1(z): | |
x, y = z | |
return [[2 * x * y, x ** 2], [np.full_like(x, 5), np.cos(y)]] | |
f1.mn = 2, 2 # type: ignore[attr-defined] | |
f1.ref = df1 # type: ignore[attr-defined] | |
def f2(z, xp): | |
r, phi = z | |
return xp.stack([r * xp.cos(phi), r * xp.sin(phi)]) | |
def df2(z): | |
r, phi = z | |
return [[np.cos(phi), -r * np.sin(phi)], | |
[np.sin(phi), r * np.cos(phi)]] | |
f2.mn = 2, 2 # type: ignore[attr-defined] | |
f2.ref = df2 # type: ignore[attr-defined] | |
def f3(z, xp): | |
r, phi, th = z | |
return xp.stack([r * xp.sin(phi) * xp.cos(th), r * xp.sin(phi) * xp.sin(th), | |
r * xp.cos(phi)]) | |
def df3(z): | |
r, phi, th = z | |
return [[np.sin(phi) * np.cos(th), r * np.cos(phi) * np.cos(th), | |
-r * np.sin(phi) * np.sin(th)], | |
[np.sin(phi) * np.sin(th), r * np.cos(phi) * np.sin(th), | |
r * np.sin(phi) * np.cos(th)], | |
[np.cos(phi), -r * np.sin(phi), np.zeros_like(r)]] | |
f3.mn = 3, 3 # type: ignore[attr-defined] | |
f3.ref = df3 # type: ignore[attr-defined] | |
def f4(x, xp): | |
x1, x2, x3 = x | |
return xp.stack([x1, 5 * x3, 4 * x2 ** 2 - 2 * x3, x3 * xp.sin(x1)]) | |
def df4(x): | |
x1, x2, x3 = x | |
one = np.ones_like(x1) | |
return [[one, 0 * one, 0 * one], | |
[0 * one, 0 * one, 5 * one], | |
[0 * one, 8 * x2, -2 * one], | |
[x3 * np.cos(x1), 0 * one, np.sin(x1)]] | |
f4.mn = 3, 4 # type: ignore[attr-defined] | |
f4.ref = df4 # type: ignore[attr-defined] | |
def f5(x, xp): | |
x1, x2, x3 = x | |
return xp.stack([5 * x2, 4 * x1 ** 2 - 2 * xp.sin(x2 * x3), x2 * x3]) | |
def df5(x): | |
x1, x2, x3 = x | |
one = np.ones_like(x1) | |
return [[0 * one, 5 * one, 0 * one], | |
[8 * x1, -2 * x3 * np.cos(x2 * x3), -2 * x2 * np.cos(x2 * x3)], | |
[0 * one, x3, x2]] | |
f5.mn = 3, 3 # type: ignore[attr-defined] | |
f5.ref = df5 # type: ignore[attr-defined] | |
def rosen(x, _): return optimize.rosen(x) | |
rosen.mn = 5, 1 # type: ignore[attr-defined] | |
rosen.ref = optimize.rosen_der # type: ignore[attr-defined] | |
def test_examples(self, dtype, size, func, xp): | |
atol = 1e-10 if dtype == 'float64' else 1.99e-3 | |
dtype = getattr(xp, dtype) | |
rng = np.random.default_rng(458912319542) | |
m, n = func.mn | |
x = rng.random(size=(m,) + size) | |
res = jacobian(lambda x: func(x , xp), xp.asarray(x, dtype=dtype)) | |
# convert list of arrays to single array before converting to xp array | |
ref = xp.asarray(np.asarray(func.ref(x)), dtype=dtype) | |
xp_assert_close(res.df, ref, atol=atol) | |
def test_attrs(self, xp): | |
# Test attributes of result object | |
z = xp.asarray([0.5, 0.25]) | |
# case in which some elements of the Jacobian are harder | |
# to calculate than others | |
def df1(z): | |
x, y = z | |
return xp.stack([xp.cos(0.5*x) * xp.cos(y), xp.sin(2*x) * y**2]) | |
def df1_0xy(x, y): | |
return xp.cos(0.5*x) * xp.cos(y) | |
def df1_1xy(x, y): | |
return xp.sin(2*x) * y**2 | |
res = jacobian(df1, z, initial_step=10) | |
if is_numpy(xp): | |
assert len(np.unique(res.nit)) == 4 | |
assert len(np.unique(res.nfev)) == 4 | |
res00 = jacobian(lambda x: df1_0xy(x, z[1]), z[0:1], initial_step=10) | |
res01 = jacobian(lambda y: df1_0xy(z[0], y), z[1:2], initial_step=10) | |
res10 = jacobian(lambda x: df1_1xy(x, z[1]), z[0:1], initial_step=10) | |
res11 = jacobian(lambda y: df1_1xy(z[0], y), z[1:2], initial_step=10) | |
ref = optimize.OptimizeResult() | |
for attr in ['success', 'status', 'df', 'nit', 'nfev']: | |
ref_attr = xp.asarray([[getattr(res00, attr), getattr(res01, attr)], | |
[getattr(res10, attr), getattr(res11, attr)]]) | |
ref[attr] = xp.squeeze(ref_attr) | |
rtol = 1.5e-5 if res[attr].dtype == xp.float32 else 1.5e-14 | |
xp_assert_close(res[attr], ref[attr], rtol=rtol) | |
def test_step_direction_size(self, xp): | |
# Check that `step_direction` and `initial_step` can be used to ensure that | |
# the usable domain of a function is respected. | |
rng = np.random.default_rng(23892589425245) | |
b = rng.random(3) | |
eps = 1e-7 # torch needs wiggle room? | |
def f(x): | |
x[0, x[0] < b[0]] = xp.nan | |
x[0, x[0] > b[0] + 0.25] = xp.nan | |
x[1, x[1] > b[1]] = xp.nan | |
x[1, x[1] < b[1] - 0.1-eps] = xp.nan | |
return TestJacobian.f5(x, xp) | |
dir = [1, -1, 0] | |
h0 = [0.25, 0.1, 0.5] | |
atol = {'atol': 1e-8} | |
res = jacobian(f, xp.asarray(b, dtype=xp.float64), initial_step=h0, | |
step_direction=dir, tolerances=atol) | |
ref = xp.asarray(TestJacobian.df5(b), dtype=xp.float64) | |
xp_assert_close(res.df, ref, atol=1e-8) | |
assert xp.all(xp.isfinite(ref)) | |
class TestHessian(JacobianHessianTest): | |
jh_func = hessian | |
def test_example(self, shape, xp): | |
rng = np.random.default_rng(458912319542) | |
m = 3 | |
x = xp.asarray(rng.random((m,) + shape), dtype=xp.float64) | |
res = hessian(optimize.rosen, x) | |
if shape: | |
x = xp.reshape(x, (m, -1)) | |
ref = xp.stack([optimize.rosen_hess(xi) for xi in x.T]) | |
ref = xp.moveaxis(ref, 0, -1) | |
ref = xp.reshape(ref, (m, m,) + shape) | |
else: | |
ref = optimize.rosen_hess(x) | |
xp_assert_close(res.ddf, ref, atol=1e-8) | |
# # Removed symmetry enforcement; consider adding back in as a feature | |
# # check symmetry | |
# for key in ['ddf', 'error', 'nfev', 'success', 'status']: | |
# assert_equal(res[key], np.swapaxes(res[key], 0, 1)) | |
def test_float32(self, xp): | |
rng = np.random.default_rng(458912319542) | |
x = xp.asarray(rng.random(3), dtype=xp.float32) | |
res = hessian(optimize.rosen, x) | |
ref = optimize.rosen_hess(x) | |
mask = (ref != 0) | |
xp_assert_close(res.ddf[mask], ref[mask]) | |
atol = 1e-2 * xp.abs(xp.min(ref[mask])) | |
xp_assert_close(res.ddf[~mask], ref[~mask], atol=atol) | |
def test_nfev(self, xp): | |
z = xp.asarray([0.5, 0.25]) | |
xp_test = array_namespace(z) | |
def f1(z): | |
x, y = xp_test.broadcast_arrays(*z) | |
f1.nfev = f1.nfev + (math.prod(x.shape[2:]) if x.ndim > 2 else 1) | |
return xp.sin(x) * y ** 3 | |
f1.nfev = 0 | |
res = hessian(f1, z, initial_step=10) | |
f1.nfev = 0 | |
res00 = hessian(lambda x: f1([x[0], z[1]]), z[0:1], initial_step=10) | |
assert res.nfev[0, 0] == f1.nfev == res00.nfev[0, 0] | |
f1.nfev = 0 | |
res11 = hessian(lambda y: f1([z[0], y[0]]), z[1:2], initial_step=10) | |
assert res.nfev[1, 1] == f1.nfev == res11.nfev[0, 0] | |
# Removed symmetry enforcement; consider adding back in as a feature | |
# assert_equal(res.nfev, res.nfev.T) # check symmetry | |
# assert np.unique(res.nfev).size == 3 | |
def test_small_rtol_warning(self, xp): | |
message = 'The specified `rtol=1e-15`, but...' | |
with pytest.warns(RuntimeWarning, match=message): | |
hessian(xp.sin, [1.], tolerances=dict(rtol=1e-15)) | |