|
import numpy as np |
|
import pytest |
|
from numpy.random import random |
|
from numpy.testing import ( |
|
assert_array_equal, assert_raises, assert_allclose, IS_WASM |
|
) |
|
import threading |
|
import queue |
|
|
|
|
|
def fft1(x): |
|
L = len(x) |
|
phase = -2j * np.pi * (np.arange(L) / L) |
|
phase = np.arange(L).reshape(-1, 1) * phase |
|
return np.sum(x*np.exp(phase), axis=1) |
|
|
|
|
|
class TestFFTShift: |
|
|
|
def test_fft_n(self): |
|
assert_raises(ValueError, np.fft.fft, [1, 2, 3], 0) |
|
|
|
|
|
class TestFFT1D: |
|
|
|
def test_identity(self): |
|
maxlen = 512 |
|
x = random(maxlen) + 1j*random(maxlen) |
|
xr = random(maxlen) |
|
for i in range(1, maxlen): |
|
assert_allclose(np.fft.ifft(np.fft.fft(x[0:i])), x[0:i], |
|
atol=1e-12) |
|
assert_allclose(np.fft.irfft(np.fft.rfft(xr[0:i]), i), |
|
xr[0:i], atol=1e-12) |
|
|
|
@pytest.mark.parametrize("dtype", [np.single, np.double, np.longdouble]) |
|
def test_identity_long_short(self, dtype): |
|
|
|
|
|
maxlen = 16 |
|
atol = 5 * np.spacing(np.array(1., dtype=dtype)) |
|
x = random(maxlen).astype(dtype) + 1j*random(maxlen).astype(dtype) |
|
xx = np.concatenate([x, np.zeros_like(x)]) |
|
xr = random(maxlen).astype(dtype) |
|
xxr = np.concatenate([xr, np.zeros_like(xr)]) |
|
for i in range(1, maxlen*2): |
|
check_c = np.fft.ifft(np.fft.fft(x, n=i), n=i) |
|
assert check_c.real.dtype == dtype |
|
assert_allclose(check_c, xx[0:i], atol=atol, rtol=0) |
|
check_r = np.fft.irfft(np.fft.rfft(xr, n=i), n=i) |
|
assert check_r.dtype == dtype |
|
assert_allclose(check_r, xxr[0:i], atol=atol, rtol=0) |
|
|
|
@pytest.mark.parametrize("dtype", [np.single, np.double, np.longdouble]) |
|
def test_identity_long_short_reversed(self, dtype): |
|
|
|
maxlen = 16 |
|
atol = 5 * np.spacing(np.array(1., dtype=dtype)) |
|
x = random(maxlen).astype(dtype) + 1j*random(maxlen).astype(dtype) |
|
xx = np.concatenate([x, np.zeros_like(x)]) |
|
for i in range(1, maxlen*2): |
|
check_via_c = np.fft.fft(np.fft.ifft(x, n=i), n=i) |
|
assert check_via_c.dtype == x.dtype |
|
assert_allclose(check_via_c, xx[0:i], atol=atol, rtol=0) |
|
|
|
|
|
|
|
y = x.copy() |
|
n = i // 2 + 1 |
|
y.imag[0] = 0 |
|
if i % 2 == 0: |
|
y.imag[n-1:] = 0 |
|
yy = np.concatenate([y, np.zeros_like(y)]) |
|
check_via_r = np.fft.rfft(np.fft.irfft(x, n=i), n=i) |
|
assert check_via_r.dtype == x.dtype |
|
assert_allclose(check_via_r, yy[0:n], atol=atol, rtol=0) |
|
|
|
def test_fft(self): |
|
x = random(30) + 1j*random(30) |
|
assert_allclose(fft1(x), np.fft.fft(x), atol=1e-6) |
|
assert_allclose(fft1(x), np.fft.fft(x, norm="backward"), atol=1e-6) |
|
assert_allclose(fft1(x) / np.sqrt(30), |
|
np.fft.fft(x, norm="ortho"), atol=1e-6) |
|
assert_allclose(fft1(x) / 30., |
|
np.fft.fft(x, norm="forward"), atol=1e-6) |
|
|
|
@pytest.mark.parametrize("axis", (0, 1)) |
|
@pytest.mark.parametrize("dtype", (complex, float)) |
|
@pytest.mark.parametrize("transpose", (True, False)) |
|
def test_fft_out_argument(self, dtype, transpose, axis): |
|
def zeros_like(x): |
|
if transpose: |
|
return np.zeros_like(x.T).T |
|
else: |
|
return np.zeros_like(x) |
|
|
|
|
|
if dtype is complex: |
|
y = random((10, 20)) + 1j*random((10, 20)) |
|
fft, ifft = np.fft.fft, np.fft.ifft |
|
else: |
|
y = random((10, 20)) |
|
fft, ifft = np.fft.rfft, np.fft.irfft |
|
|
|
expected = fft(y, axis=axis) |
|
out = zeros_like(expected) |
|
result = fft(y, out=out, axis=axis) |
|
assert result is out |
|
assert_array_equal(result, expected) |
|
|
|
expected2 = ifft(expected, axis=axis) |
|
out2 = out if dtype is complex else zeros_like(expected2) |
|
result2 = ifft(out, out=out2, axis=axis) |
|
assert result2 is out2 |
|
assert_array_equal(result2, expected2) |
|
|
|
@pytest.mark.parametrize("axis", [0, 1]) |
|
def test_fft_inplace_out(self, axis): |
|
|
|
y = random((20, 20)) + 1j*random((20, 20)) |
|
|
|
y1 = y.copy() |
|
expected1 = np.fft.fft(y1, axis=axis) |
|
result1 = np.fft.fft(y1, axis=axis, out=y1) |
|
assert result1 is y1 |
|
assert_array_equal(result1, expected1) |
|
|
|
y2 = y.copy() |
|
out2 = y2[:10] if axis == 0 else y2[:, :10] |
|
expected2 = np.fft.fft(y2, n=10, axis=axis) |
|
result2 = np.fft.fft(y2, n=10, axis=axis, out=out2) |
|
assert result2 is out2 |
|
assert_array_equal(result2, expected2) |
|
if axis == 0: |
|
assert_array_equal(y2[10:], y[10:]) |
|
else: |
|
assert_array_equal(y2[:, 10:], y[:, 10:]) |
|
|
|
y3 = y.copy() |
|
y3_sel = y3[5:] if axis == 0 else y3[:, 5:] |
|
out3 = y3[5:15] if axis == 0 else y3[:, 5:15] |
|
expected3 = np.fft.fft(y3_sel, n=10, axis=axis) |
|
result3 = np.fft.fft(y3_sel, n=10, axis=axis, out=out3) |
|
assert result3 is out3 |
|
assert_array_equal(result3, expected3) |
|
if axis == 0: |
|
assert_array_equal(y3[:5], y[:5]) |
|
assert_array_equal(y3[15:], y[15:]) |
|
else: |
|
assert_array_equal(y3[:, :5], y[:, :5]) |
|
assert_array_equal(y3[:, 15:], y[:, 15:]) |
|
|
|
y4 = y.copy() |
|
y4_sel = y4[:10] if axis == 0 else y4[:, :10] |
|
out4 = y4[:15] if axis == 0 else y4[:, :15] |
|
expected4 = np.fft.fft(y4_sel, n=15, axis=axis) |
|
result4 = np.fft.fft(y4_sel, n=15, axis=axis, out=out4) |
|
assert result4 is out4 |
|
assert_array_equal(result4, expected4) |
|
if axis == 0: |
|
assert_array_equal(y4[15:], y[15:]) |
|
else: |
|
assert_array_equal(y4[:, 15:], y[:, 15:]) |
|
|
|
y5 = y.copy() |
|
out5 = y5.T |
|
result5 = np.fft.fft(y5, axis=axis, out=out5) |
|
assert result5 is out5 |
|
assert_array_equal(result5, expected1) |
|
|
|
y6 = y.copy() |
|
out6 = y6[::-1] if axis == 0 else y6[:, ::-1] |
|
result6 = np.fft.fft(y6, axis=axis, out=out6) |
|
assert result6 is out6 |
|
assert_array_equal(result6, expected1) |
|
|
|
def test_fft_bad_out(self): |
|
x = np.arange(30.) |
|
with pytest.raises(TypeError, match="must be of ArrayType"): |
|
np.fft.fft(x, out="") |
|
with pytest.raises(ValueError, match="has wrong shape"): |
|
np.fft.fft(x, out=np.zeros_like(x).reshape(5, -1)) |
|
with pytest.raises(TypeError, match="Cannot cast"): |
|
np.fft.fft(x, out=np.zeros_like(x, dtype=float)) |
|
|
|
@pytest.mark.parametrize('norm', (None, 'backward', 'ortho', 'forward')) |
|
def test_ifft(self, norm): |
|
x = random(30) + 1j*random(30) |
|
assert_allclose( |
|
x, np.fft.ifft(np.fft.fft(x, norm=norm), norm=norm), |
|
atol=1e-6) |
|
|
|
with pytest.raises(ValueError, |
|
match='Invalid number of FFT data points'): |
|
np.fft.ifft([], norm=norm) |
|
|
|
def test_fft2(self): |
|
x = random((30, 20)) + 1j*random((30, 20)) |
|
assert_allclose(np.fft.fft(np.fft.fft(x, axis=1), axis=0), |
|
np.fft.fft2(x), atol=1e-6) |
|
assert_allclose(np.fft.fft2(x), |
|
np.fft.fft2(x, norm="backward"), atol=1e-6) |
|
assert_allclose(np.fft.fft2(x) / np.sqrt(30 * 20), |
|
np.fft.fft2(x, norm="ortho"), atol=1e-6) |
|
assert_allclose(np.fft.fft2(x) / (30. * 20.), |
|
np.fft.fft2(x, norm="forward"), atol=1e-6) |
|
|
|
def test_ifft2(self): |
|
x = random((30, 20)) + 1j*random((30, 20)) |
|
assert_allclose(np.fft.ifft(np.fft.ifft(x, axis=1), axis=0), |
|
np.fft.ifft2(x), atol=1e-6) |
|
assert_allclose(np.fft.ifft2(x), |
|
np.fft.ifft2(x, norm="backward"), atol=1e-6) |
|
assert_allclose(np.fft.ifft2(x) * np.sqrt(30 * 20), |
|
np.fft.ifft2(x, norm="ortho"), atol=1e-6) |
|
assert_allclose(np.fft.ifft2(x) * (30. * 20.), |
|
np.fft.ifft2(x, norm="forward"), atol=1e-6) |
|
|
|
def test_fftn(self): |
|
x = random((30, 20, 10)) + 1j*random((30, 20, 10)) |
|
assert_allclose( |
|
np.fft.fft(np.fft.fft(np.fft.fft(x, axis=2), axis=1), axis=0), |
|
np.fft.fftn(x), atol=1e-6) |
|
assert_allclose(np.fft.fftn(x), |
|
np.fft.fftn(x, norm="backward"), atol=1e-6) |
|
assert_allclose(np.fft.fftn(x) / np.sqrt(30 * 20 * 10), |
|
np.fft.fftn(x, norm="ortho"), atol=1e-6) |
|
assert_allclose(np.fft.fftn(x) / (30. * 20. * 10.), |
|
np.fft.fftn(x, norm="forward"), atol=1e-6) |
|
|
|
def test_ifftn(self): |
|
x = random((30, 20, 10)) + 1j*random((30, 20, 10)) |
|
assert_allclose( |
|
np.fft.ifft(np.fft.ifft(np.fft.ifft(x, axis=2), axis=1), axis=0), |
|
np.fft.ifftn(x), atol=1e-6) |
|
assert_allclose(np.fft.ifftn(x), |
|
np.fft.ifftn(x, norm="backward"), atol=1e-6) |
|
assert_allclose(np.fft.ifftn(x) * np.sqrt(30 * 20 * 10), |
|
np.fft.ifftn(x, norm="ortho"), atol=1e-6) |
|
assert_allclose(np.fft.ifftn(x) * (30. * 20. * 10.), |
|
np.fft.ifftn(x, norm="forward"), atol=1e-6) |
|
|
|
def test_rfft(self): |
|
x = random(30) |
|
for n in [x.size, 2*x.size]: |
|
for norm in [None, 'backward', 'ortho', 'forward']: |
|
assert_allclose( |
|
np.fft.fft(x, n=n, norm=norm)[:(n//2 + 1)], |
|
np.fft.rfft(x, n=n, norm=norm), atol=1e-6) |
|
assert_allclose( |
|
np.fft.rfft(x, n=n), |
|
np.fft.rfft(x, n=n, norm="backward"), atol=1e-6) |
|
assert_allclose( |
|
np.fft.rfft(x, n=n) / np.sqrt(n), |
|
np.fft.rfft(x, n=n, norm="ortho"), atol=1e-6) |
|
assert_allclose( |
|
np.fft.rfft(x, n=n) / n, |
|
np.fft.rfft(x, n=n, norm="forward"), atol=1e-6) |
|
|
|
def test_rfft_even(self): |
|
x = np.arange(8) |
|
n = 4 |
|
y = np.fft.rfft(x, n) |
|
assert_allclose(y, np.fft.fft(x[:n])[:n//2 + 1], rtol=1e-14) |
|
|
|
def test_rfft_odd(self): |
|
x = np.array([1, 0, 2, 3, -3]) |
|
y = np.fft.rfft(x) |
|
assert_allclose(y, np.fft.fft(x)[:3], rtol=1e-14) |
|
|
|
def test_irfft(self): |
|
x = random(30) |
|
assert_allclose(x, np.fft.irfft(np.fft.rfft(x)), atol=1e-6) |
|
assert_allclose(x, np.fft.irfft(np.fft.rfft(x, norm="backward"), |
|
norm="backward"), atol=1e-6) |
|
assert_allclose(x, np.fft.irfft(np.fft.rfft(x, norm="ortho"), |
|
norm="ortho"), atol=1e-6) |
|
assert_allclose(x, np.fft.irfft(np.fft.rfft(x, norm="forward"), |
|
norm="forward"), atol=1e-6) |
|
|
|
def test_rfft2(self): |
|
x = random((30, 20)) |
|
assert_allclose(np.fft.fft2(x)[:, :11], np.fft.rfft2(x), atol=1e-6) |
|
assert_allclose(np.fft.rfft2(x), |
|
np.fft.rfft2(x, norm="backward"), atol=1e-6) |
|
assert_allclose(np.fft.rfft2(x) / np.sqrt(30 * 20), |
|
np.fft.rfft2(x, norm="ortho"), atol=1e-6) |
|
assert_allclose(np.fft.rfft2(x) / (30. * 20.), |
|
np.fft.rfft2(x, norm="forward"), atol=1e-6) |
|
|
|
def test_irfft2(self): |
|
x = random((30, 20)) |
|
assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x)), atol=1e-6) |
|
assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x, norm="backward"), |
|
norm="backward"), atol=1e-6) |
|
assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x, norm="ortho"), |
|
norm="ortho"), atol=1e-6) |
|
assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x, norm="forward"), |
|
norm="forward"), atol=1e-6) |
|
|
|
def test_rfftn(self): |
|
x = random((30, 20, 10)) |
|
assert_allclose(np.fft.fftn(x)[:, :, :6], np.fft.rfftn(x), atol=1e-6) |
|
assert_allclose(np.fft.rfftn(x), |
|
np.fft.rfftn(x, norm="backward"), atol=1e-6) |
|
assert_allclose(np.fft.rfftn(x) / np.sqrt(30 * 20 * 10), |
|
np.fft.rfftn(x, norm="ortho"), atol=1e-6) |
|
assert_allclose(np.fft.rfftn(x) / (30. * 20. * 10.), |
|
np.fft.rfftn(x, norm="forward"), atol=1e-6) |
|
|
|
x = np.ones((2, 3)) |
|
result = np.fft.rfftn(x, axes=(0, 0, 1), s=(10, 20, 40)) |
|
assert result.shape == (10, 21) |
|
expected = np.fft.fft(np.fft.fft(np.fft.rfft(x, axis=1, n=40), |
|
axis=0, n=20), axis=0, n=10) |
|
assert expected.shape == (10, 21) |
|
assert_allclose(result, expected, atol=1e-6) |
|
|
|
def test_irfftn(self): |
|
x = random((30, 20, 10)) |
|
assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x)), atol=1e-6) |
|
assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x, norm="backward"), |
|
norm="backward"), atol=1e-6) |
|
assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x, norm="ortho"), |
|
norm="ortho"), atol=1e-6) |
|
assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x, norm="forward"), |
|
norm="forward"), atol=1e-6) |
|
|
|
def test_hfft(self): |
|
x = random(14) + 1j*random(14) |
|
x_herm = np.concatenate((random(1), x, random(1))) |
|
x = np.concatenate((x_herm, x[::-1].conj())) |
|
assert_allclose(np.fft.fft(x), np.fft.hfft(x_herm), atol=1e-6) |
|
assert_allclose(np.fft.hfft(x_herm), |
|
np.fft.hfft(x_herm, norm="backward"), atol=1e-6) |
|
assert_allclose(np.fft.hfft(x_herm) / np.sqrt(30), |
|
np.fft.hfft(x_herm, norm="ortho"), atol=1e-6) |
|
assert_allclose(np.fft.hfft(x_herm) / 30., |
|
np.fft.hfft(x_herm, norm="forward"), atol=1e-6) |
|
|
|
def test_ihfft(self): |
|
x = random(14) + 1j*random(14) |
|
x_herm = np.concatenate((random(1), x, random(1))) |
|
x = np.concatenate((x_herm, x[::-1].conj())) |
|
assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm)), atol=1e-6) |
|
assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm, |
|
norm="backward"), norm="backward"), atol=1e-6) |
|
assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm, |
|
norm="ortho"), norm="ortho"), atol=1e-6) |
|
assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm, |
|
norm="forward"), norm="forward"), atol=1e-6) |
|
|
|
@pytest.mark.parametrize("op", [np.fft.fftn, np.fft.ifftn, |
|
np.fft.rfftn, np.fft.irfftn]) |
|
def test_axes(self, op): |
|
x = random((30, 20, 10)) |
|
axes = [(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0)] |
|
for a in axes: |
|
op_tr = op(np.transpose(x, a)) |
|
tr_op = np.transpose(op(x, axes=a), a) |
|
assert_allclose(op_tr, tr_op, atol=1e-6) |
|
|
|
@pytest.mark.parametrize("op", [np.fft.fftn, np.fft.ifftn, |
|
np.fft.fft2, np.fft.ifft2]) |
|
def test_s_negative_1(self, op): |
|
x = np.arange(100).reshape(10, 10) |
|
|
|
assert op(x, s=(-1, 5), axes=(0, 1)).shape == (10, 5) |
|
|
|
@pytest.mark.parametrize("op", [np.fft.fftn, np.fft.ifftn, |
|
np.fft.rfftn, np.fft.irfftn]) |
|
def test_s_axes_none(self, op): |
|
x = np.arange(100).reshape(10, 10) |
|
with pytest.warns(match='`axes` should not be `None` if `s`'): |
|
op(x, s=(-1, 5)) |
|
|
|
@pytest.mark.parametrize("op", [np.fft.fft2, np.fft.ifft2]) |
|
def test_s_axes_none_2D(self, op): |
|
x = np.arange(100).reshape(10, 10) |
|
with pytest.warns(match='`axes` should not be `None` if `s`'): |
|
op(x, s=(-1, 5), axes=None) |
|
|
|
@pytest.mark.parametrize("op", [np.fft.fftn, np.fft.ifftn, |
|
np.fft.rfftn, np.fft.irfftn, |
|
np.fft.fft2, np.fft.ifft2]) |
|
def test_s_contains_none(self, op): |
|
x = random((30, 20, 10)) |
|
with pytest.warns(match='array containing `None` values to `s`'): |
|
op(x, s=(10, None, 10), axes=(0, 1, 2)) |
|
|
|
def test_all_1d_norm_preserving(self): |
|
|
|
x = random(30) |
|
x_norm = np.linalg.norm(x) |
|
n = x.size * 2 |
|
func_pairs = [(np.fft.fft, np.fft.ifft), |
|
(np.fft.rfft, np.fft.irfft), |
|
|
|
|
|
(np.fft.ihfft, np.fft.hfft), |
|
] |
|
for forw, back in func_pairs: |
|
for n in [x.size, 2*x.size]: |
|
for norm in [None, 'backward', 'ortho', 'forward']: |
|
tmp = forw(x, n=n, norm=norm) |
|
tmp = back(tmp, n=n, norm=norm) |
|
assert_allclose(x_norm, |
|
np.linalg.norm(tmp), atol=1e-6) |
|
|
|
@pytest.mark.parametrize("axes", [(0, 1), (0, 2), None]) |
|
@pytest.mark.parametrize("dtype", (complex, float)) |
|
@pytest.mark.parametrize("transpose", (True, False)) |
|
def test_fftn_out_argument(self, dtype, transpose, axes): |
|
def zeros_like(x): |
|
if transpose: |
|
return np.zeros_like(x.T).T |
|
else: |
|
return np.zeros_like(x) |
|
|
|
|
|
if dtype is complex: |
|
x = random((10, 5, 6)) + 1j*random((10, 5, 6)) |
|
fft, ifft = np.fft.fftn, np.fft.ifftn |
|
else: |
|
x = random((10, 5, 6)) |
|
fft, ifft = np.fft.rfftn, np.fft.irfftn |
|
|
|
expected = fft(x, axes=axes) |
|
out = zeros_like(expected) |
|
result = fft(x, out=out, axes=axes) |
|
assert result is out |
|
assert_array_equal(result, expected) |
|
|
|
expected2 = ifft(expected, axes=axes) |
|
out2 = out if dtype is complex else zeros_like(expected2) |
|
result2 = ifft(out, out=out2, axes=axes) |
|
assert result2 is out2 |
|
assert_array_equal(result2, expected2) |
|
|
|
@pytest.mark.parametrize("fft", [np.fft.fftn, np.fft.ifftn, np.fft.rfftn]) |
|
def test_fftn_out_and_s_interaction(self, fft): |
|
|
|
if fft is np.fft.rfftn: |
|
x = random((10, 5, 6)) |
|
else: |
|
x = random((10, 5, 6)) + 1j*random((10, 5, 6)) |
|
with pytest.raises(ValueError, match="has wrong shape"): |
|
fft(x, out=np.zeros_like(x), s=(3, 3, 3), axes=(0, 1, 2)) |
|
|
|
s = (10, 5, 5) |
|
expected = fft(x, s=s, axes=(0, 1, 2)) |
|
out = np.zeros_like(expected) |
|
result = fft(x, s=s, axes=(0, 1, 2), out=out) |
|
assert result is out |
|
assert_array_equal(result, expected) |
|
|
|
@pytest.mark.parametrize("s", [(9, 5, 5), (3, 3, 3)]) |
|
def test_irfftn_out_and_s_interaction(self, s): |
|
|
|
|
|
x = random((9, 5, 6, 2)) + 1j*random((9, 5, 6, 2)) |
|
expected = np.fft.irfftn(x, s=s, axes=(0, 1, 2)) |
|
out = np.zeros_like(expected) |
|
result = np.fft.irfftn(x, s=s, axes=(0, 1, 2), out=out) |
|
assert result is out |
|
assert_array_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"dtype", |
|
[np.float32, np.float64, np.complex64, np.complex128]) |
|
@pytest.mark.parametrize("order", ["F", 'non-contiguous']) |
|
@pytest.mark.parametrize( |
|
"fft", |
|
[np.fft.fft, np.fft.fft2, np.fft.fftn, |
|
np.fft.ifft, np.fft.ifft2, np.fft.ifftn]) |
|
def test_fft_with_order(dtype, order, fft): |
|
|
|
|
|
rng = np.random.RandomState(42) |
|
X = rng.rand(8, 7, 13).astype(dtype, copy=False) |
|
|
|
_tol = 8.0 * np.sqrt(np.log2(X.size)) * np.finfo(X.dtype).eps |
|
if order == 'F': |
|
Y = np.asfortranarray(X) |
|
else: |
|
|
|
Y = X[::-1] |
|
X = np.ascontiguousarray(X[::-1]) |
|
|
|
if fft.__name__.endswith('fft'): |
|
for axis in range(3): |
|
X_res = fft(X, axis=axis) |
|
Y_res = fft(Y, axis=axis) |
|
assert_allclose(X_res, Y_res, atol=_tol, rtol=_tol) |
|
elif fft.__name__.endswith(('fft2', 'fftn')): |
|
axes = [(0, 1), (1, 2), (0, 2)] |
|
if fft.__name__.endswith('fftn'): |
|
axes.extend([(0,), (1,), (2,), None]) |
|
for ax in axes: |
|
X_res = fft(X, axes=ax) |
|
Y_res = fft(Y, axes=ax) |
|
assert_allclose(X_res, Y_res, atol=_tol, rtol=_tol) |
|
else: |
|
raise ValueError |
|
|
|
|
|
@pytest.mark.parametrize("order", ["F", "C"]) |
|
@pytest.mark.parametrize("n", [None, 7, 12]) |
|
def test_fft_output_order(order, n): |
|
rng = np.random.RandomState(42) |
|
x = rng.rand(10) |
|
x = np.asarray(x, dtype=np.complex64, order=order) |
|
res = np.fft.fft(x, n=n) |
|
assert res.flags.c_contiguous == x.flags.c_contiguous |
|
assert res.flags.f_contiguous == x.flags.f_contiguous |
|
|
|
@pytest.mark.skipif(IS_WASM, reason="Cannot start thread") |
|
class TestFFTThreadSafe: |
|
threads = 16 |
|
input_shape = (800, 200) |
|
|
|
def _test_mtsame(self, func, *args): |
|
def worker(args, q): |
|
q.put(func(*args)) |
|
|
|
q = queue.Queue() |
|
expected = func(*args) |
|
|
|
|
|
t = [threading.Thread(target=worker, args=(args, q)) |
|
for i in range(self.threads)] |
|
[x.start() for x in t] |
|
|
|
[x.join() for x in t] |
|
|
|
for i in range(self.threads): |
|
assert_array_equal(q.get(timeout=5), expected, |
|
'Function returned wrong value in multithreaded context') |
|
|
|
def test_fft(self): |
|
a = np.ones(self.input_shape) * 1+0j |
|
self._test_mtsame(np.fft.fft, a) |
|
|
|
def test_ifft(self): |
|
a = np.ones(self.input_shape) * 1+0j |
|
self._test_mtsame(np.fft.ifft, a) |
|
|
|
def test_rfft(self): |
|
a = np.ones(self.input_shape) |
|
self._test_mtsame(np.fft.rfft, a) |
|
|
|
def test_irfft(self): |
|
a = np.ones(self.input_shape) * 1+0j |
|
self._test_mtsame(np.fft.irfft, a) |
|
|
|
|
|
def test_irfft_with_n_1_regression(): |
|
|
|
x = np.arange(10) |
|
np.fft.irfft(x, n=1) |
|
np.fft.hfft(x, n=1) |
|
np.fft.irfft(np.array([0], complex), n=10) |
|
|
|
|
|
def test_irfft_with_n_large_regression(): |
|
|
|
x = np.arange(5) * (1 + 1j) |
|
result = np.fft.hfft(x, n=10) |
|
expected = np.array([20., 9.91628173, -11.8819096, 7.1048486, |
|
-6.62459848, 4., -3.37540152, -0.16057669, |
|
1.8819096, -20.86055364]) |
|
assert_allclose(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize("fft", [ |
|
np.fft.fft, np.fft.ifft, np.fft.rfft, np.fft.irfft |
|
]) |
|
@pytest.mark.parametrize("data", [ |
|
np.array([False, True, False]), |
|
np.arange(10, dtype=np.uint8), |
|
np.arange(5, dtype=np.int16), |
|
]) |
|
def test_fft_with_integer_or_bool_input(data, fft): |
|
|
|
result = fft(data) |
|
float_data = data.astype(np.result_type(data, 1.)) |
|
expected = fft(float_data) |
|
assert_array_equal(result, expected) |
|
|